<|lI!

z/NM

Diagnosis Guide

version 5 release 2

GC24-6092-01

<|lI!

z/NM

Diagnosis Guide

version 5 release 2

GC24-6092-01

Note:
FBefore using this information and the product it supports, read the information under ['Notices” on page 245.|

Second Edition (December 2005)

This edition applies to version 5, release 2, modification 0 of IBM z/VM (product number 5741-A05) and to all
subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces GC24-6092-00.

© Copyright International Business Machines Corporation 1991, 2005. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book . . . e ¢
Who Should Read This Book . I
What You Should Know before Readlng Th|s Book I (
Where to Find More Informaton.X
How to Send Your CommentstolBMX
Summary of Changes . . ([
GC24-6092-01, z/VM Version 5 Release 2 A
64-bit Exploitation. .Xi
Support for 64-Bit Dump . . . e
Support for Vector Facility Removed e (11
Guest LAN Sniffing support . . . O |1
GC24-6092-00, z/VM Version 5 Release 1 T ¢ 1
SCSI FCP Disk Support .Xv
Removal of CP Functions.Xv

Chapter 1. Introduction to Debugglng 1
How to Start Debugging . 1
Does a Problem Exist? C e e e e 2
Identifying the Problem3
Analyzing the Available Data . 4
Determining the Cause 9

Data You Need Before Calling IBM for As3|stance P
How to Use z/VM Facilities to Debug.13
Abends. L L L L oL L oo Lo 14

CP Abend. . . e

CF Service Machme Abend e 1)

CMS Abend . . . e 1)

SFS or CRR Server Abend N)

GCSAbend15

TSAFAbend.16

AVS Abend . . . e [

Virtual Machine Abend (Other than CMS) A [&
UnexpectedResults .16
Loops . . . e V4

CP Disabled Loop S e 4

Virtual Machine Disabled Loop e k<

Virtual Machine Enabled Loop18
Wait States . . . e 1)

CP Disabled Walt e ke

CP Enabled Wait . . . e e e e e 20

Virtual Machine Disabled Walt e e e e e 20

Virtual Machine Enabled Wait21
Hang Conditions ..o 021

SystemHangs 22

User Hangs . . . 224
Use of z/VM Debuggrng Commands e e e e28
Chapter 2. Debugging Interactively. . . e e e25
Commands That Display and Dump Machine Data e e25

Terminal Output 2l o

Printer Output 27
Commands That Set and Query System Features Cond|t|ons and Events . .28

© Copyright IBM Corp. 1991, 2005 iii

Commands That Monitor Events29

Controlling the Trace Information . . . G (0]
Restricting the Trace to an Address Range < 1 |
Selectivity. . . . NG 2
Tracing Successful Events NG 24
Tracing Storage Alteraton.33
The TRACE CMD Option .33
Stopping the TRACE. e 7
Commands That Alter the Contents of Storage A . .34
Altering Contents of Virtual Machine Storage (STORE Guest Command) 34
Altering Contents of Host Storage (STORE Host Command) 35
Simulating the Hardware Store Status Facility (STORE STATUS) 35
Commands to Collect and Analyze System Information37
What to Do If Your Program Loops . . N Y 4
Debugging with CP after a Program Check G 1
Chapter 3. Using TracestoDebug39
Locating the CP Trace Table .39
Trace Entries . . . R 1
Limiting the Trace Entrles Recorded Coe Y
Tracing 1/0, Data Code Paths, and Virtual Machmes Y XS
I/O Trace Example .43
Trace Table Example. .43
Data Trace Example 1 .44
Data Trace Example 2 . . . T 1)
Saving Trace Data on Tape or DASD G
Viewing the Trace Tables .47
Chapter 4. Creating a Dump e 0
Types of Dumps . . ke
Setting Up the System for a Dump e 1]
Dumping Real or Virtual Machine Data T - 2
Commands That Dump Real or Virtual Machine Data.5
Stand-alone Dump Utility .b2
Chapter 5. DebuggingCcP .55
Debugging CP in a Virtual Machine55
Abend Dumps . . . - 11
Reading CP Abend Dumps - 1)
Using the Assert Facility . . . e56
Reading the Dump with the VM Dump Toolbb6
Printing Dump Information from the VM Dump Tool57
Looking at Key Control Blocks57
HCPPFXPG: The Prefix Page e58
HCPSYSCM: The System Common Area58
HCPVMDBK: The Virtual Machine Descriptor Block P 512
HCPRDEV: The Real Device Control Block60
HCPIORBK: The I/O Request and Response Block62
HCPVDEV: The Virtual Device Block.63
HCPCPEBK: The CP Execution Block«63
HCPSAVBK and HCPSVGBK: The Save Area Block . .«68
HCPFRMTE: The Frame Table Entry.64
VMDUMP Records: Format and Content65
Chapter 6. Debugging CF Service Machine Problems 67
Determining the Status of the CF Service Machine.67

iV z/VM: Diagnosis Guide

Steps to Follow When CF Service Machine Abend Occurs .

Finding the CF Service Machine Dump . .o
Processing a CF Service Machine Dump .

Diagnosing Problems for CF Service Machines .

Chapter 7. Debugging CMS.
Debugging Commands . . .
Using the SVCTRACE command .
Tracing Capabilities in EXECs .
Nucleus Load Map
Module Load Map.
CMS Abend Processing
Finding the Reason for the CMS Abend
Using CMS to Debug .
Setting Machines to Automatically Create Dumps .
Generating CMS Abend Dumps.
Reading CMS Abend Dumps. .o
Creating Dumps in Case of Messages .
Printing a CMS Dump File. .
Commands That Alter the Contents of Storage .
Diagnosing SFS Related Application Errors

Chapter 8. Debugging CMS Pipelines. .
Debugging a Program Exception in CMS Plpel|nes
Calculating the Displacements of the Failing Module .
Recreating the Problem.
Examples . .
Debugging Incorrect Output From CMS Plpellnes .
Adding Temporary Stages to Write Out the Data
Using the CMS Pipelines TRACE Option
Debugging a CMS Plpehnes Stall .
Example . S

Chapter 9. Debugging the SFS Server or CRR Recovery Server
Summary of Steps to Follow When a Server Abend Occurs . . .
Using the Console Log . .
Using Server Dumps to D|agnose Problems .

Creating a Server Dump

Processing a Server Dump .

Diagnosing a Server Dump .

Printing a Server Dump .
Using System Trace Data to Dlagnose Problems

Setting Internal Tracing

Setting External Tracing .

Chapter 10. Debugging GCS .

Internal Tracing Facilities. . . .
Using the ITRACE Command and GTRACE Macro .
Formats of Internal Trace Entries. .o

External Tracing Facilites . . .

Using the TRSOURCE Command

Using the TRSAVE Command . .

Using the CP TRACERED Utility .

Using the QUERY TRFILES Command

General Trace Information .
Formatting and Displaying External Trace Records .

. 67
. 68
. 68
. 68

. 69
. 69
. 70
.71
.72
.72
. 73
. 73
.77
. 78
. 78
. 79
. 79
. 80
. 80
. 80

. 85
. 85
. 85
. 86
. 87
. 91
. 91
. 92
. 92
. 93

. 95
. 95
. 96
. 99
.. 99
. 100
. 100
. 101
. 101
. 101
. 101

. 103
. 103
. 104
. 104
121
. 122
. 124
. 124
. 125
. 125
. 125

Contents

\'}

Examples of Formatted External Trace Table Entries

Dumping Facilities .

The Common Dump Recelver
Rules of Authorization .

Interactive Debugging Support. . .
Using Authorized Control Program (CP) Commands.
Analyzing Dumps e e
Dumping VSAM Informatron

Creating GCS Dumps . .

The GDUMP Command .

The SDUMP Macro. .

The SDUMPX Macro .

The ABEND DUMP Macro . . .

The SYSTEM RESTART Command

The VMDUMP Command

Preserving Common Storage . . .

How to Find the GCS Virtual Machine That Created a Dump

Using the GCS Trace Facilities e e e
ITRACE . .

Locating the GCS Internal Trace Table
Using the Trace Table .
ETRACE.
GTRACE
Processing Abends . . .
The Abend Work Area.
Program Checks . .

Processing GCS Dumps wrth the Dump Vlewrng Facrlrty .
Information Used by the Dump V|eW|ng FaC|I|ty

NUCON and SIE. .

Virtual Machine Control Block

How to Determine the User ID That Created a Trace Entry .

How to Locate the GCS Common Lock
Task Management .

Task Block .

State Block. . . .

WAIT COUNT Field in a State Block

LINK Block .

SVC Block .

Asynchronous Exit Block (AEB)

The Dispatch Queue . . .

How to Find the Task ID Table

How to Find Which Task Is Running.

Tracing Task and Program Management .
Program Management.

Task Load List

Virtual Machine Load L|st .

How to Find Where a Program |s Loaded

GCS Load Error .
IUCV . . .

Debugging Appllcatrons .

Tracing IUCV . .

The IUCV Anchor Block (IUCBK)

The User ID Blocks (IUCID).

The Path ID Table (IUCPT) .

How to Find Information about a Path .
Storage Management .

Vi z/VM: Diagnosis Guide

. 126
. 128
. 128
. 128
. 128
. 128
. 129
. 129
. 130
. 130
. 131
. 131
. 131
. 131
. 131
. 131
. 132
. 132
. 132
. 132
. 134
. 135
. 135
. 135
. 136
. 137
. 137
. 137
. 139
. 139
. 140
. 140
. 140
. 140
141
. 142
. 142
. 142
. 142
. 144
. 145
. 145
. 146
. 146
. 147
. 148
. 149
. 150
. 150
. 151
. 151
. 151
. 152
. 152
. 153
. 153

Storage Anchor Blocks

Description of the Storage Anchor Control BIocks (SACBs) .

Important Fields in Major SACBs .
Important Fields in Minor SACBs.
Checking for Storage Fragmentation
Scanning the Major and Minor SACBs.
Checking Free Storage on Any Given Page .
Finding the Key for a Given Page .
Control Blocks Describing the Storage Owned by a Task
How to Find the Storage Belonging to a Given Task.
How to Check What Subpools Belong to a Given Task.
System-Wide Description of Storage .
System-Wide Description of TSHBs and GSBBs .
Common Storage Management Problems
Tracing Storage Management .
General 1/0O.
IOSAVE
The Subchannel ID Table (SIDTABLE)
The General 1/0 Table (GIOTB)
I/O Interrupt Handling .
Interrupt Control Blocks
How to Find What Pages Are Locked by PGLOCK .
Finding Pages Not Paged in After a Page Fault
How to Find the Characteristics of a Device.
I/0 Debugging
Trace Table Entrles
Recreating the Problem .
Command and Console Support .
LOADCMD Command.
NUCON Information
SIE Information .
CMDBUF . .
WQE and ORE
VSAM.
Data Compresswn Serwces
NUCON Changes
VAD Information .
Boundary Box Usage .
VTAM/VSAM Work Areas
Helpful Hints for VSAM debugging .
Debugging Data Compression Errors .
An Example of Control and Data Flow in GCS

Chapter 11. Debugging TSAF

Summary of Steps to Follow When a TSAF Abend Occurs

Using the Console Log .
Using TSAF Dumps to D|agnose Problems .
Creating the TSAF Map . .
Creating a TSAF Dump .
Processing a TSAF Dump
Diagnosing a TSAF Dump .
Using System Trace Data to Diagnose Problems
Setting External Tracing .
Viewing TSAF Trace Entries
Interactive Service Queries .

. 154
. 155
. 155
. 155
. 156
. 156

Contents

. 156
. 157
. 157
. 161
. 161
. 161
. 161
. 162
. 163
. 164
. 165
. 166
. 166
. 167
. 168
. 168
. 168
. 169
. 169
. 170
. 170
. 170
171
171
. 172
. 173
. 173
. 174
. 174
. 175
. 176
. 176
177
177
. 178
. 178

. 181
. 181
. 182
. 182
. 183
. 183
. 183
. 184
. 185
. 185
. 186
. 187

Vii

Chapter 12. Debugging AVS e Re1e)

Using AVS Dumps to Diagnose Problems N o1
Obtaining the GCS LoadMap189
Creatingan AVYSDump .189
Processingan AYSDump19
Diagnosing an AVS Dump . . . e o]0

Using System Trace Data to Diagnose Problems B EX
Setting Internal Tracing 19
Setting External Tracing .19
Viewing AVS Trace Entries19

Interactive Service Queries193

Summary of Steps to Follow When an AVS Abend Occurs193

Appendix A. Problem-Specific Checklists. 195

CP Abend Checklist .19

CMS Abend Checklist. .19

GCS Abend Checklist .. .19

RSCS Abend Checklist .19

CP Wait State Checklist I £ 6]

Virtual Machine Wait State Checkhst e £ 6]

RSCS Wait State Checklist19

Application Program checklist for Unexpected Output C e e e e e 197

Checklists for Performance Problems197
An Infinite Loop inCP. T 1274
An Infinite Loop in a Virtual Machlne T 1274
An Infinite LoopinRSCS.197
Hardware Failure . . . N ke
Inadequate System Parameters e 114

Appendix B. GCS ControlBlocks. 199

NUCON—GCS Nucleus Constant Area199
SIE—NUCON Extension.208
TBK—Task Block .205
STBLK—State Block . . . T ={e v 4
SMAB—Storage Management C e e e L2009
ANCH—Storage Anchor Block. . . . 2 [¢)
EXTWA—EXxternal Interrupt Handler Work Area 2 B
SVCWA—SVC Interrupt Handler Work Area.21
PGMWA—Program Interrupt Work Area212
VMCB—Virtual Machine Control Block.212

Appendix C. Trace TableCodes218

Notices245

Trademarks. L L ... L. 247

Glossary249

Bibliography 21 oA

Where to Get z/VM Books C e e s 25

zNM Base Library .25
Overview . . . e e e e 2H
Installation, Mlgratlon and Serwce e e e e e 2
Planning and Administration. 251
Customization and Tuning251
Operation25

Viii z7vM: Diagnosis Guide

Application Programming.
End Use.
System Diagnosis
Books for z/VM Optional Features

Data Facility Storage Management Subsystem for VM .

Directory Maintenance Facility .
Performance Toolkit for VM .
Resource Access Control Facility .

Index .

. 251
. 252
. 252
. 252
. 252
. 252
. 253
. 253

. 255

Contents

ix

X z/VM: Diagnosis Guide

About This Book

This book provides diagnostic guidance information to help IBM® customers identify,
report, solve, and collect information about problems in the z/VM® operating
system.

Who Should Read This Book

This publication is intended for system programmers, system analysts, users who
will do diagnosis of z/VM, and users collecting data for diagnosis.

What You Should Know before Reading This Book

This publication assumes that you understand the hardware controls and features of
your installation. It also assumes that you can use assembler language and have
experience with programming concepts and techniques.

Where to Find More Information

You can find more information about VM and diagnosis in the publications listed in
the back of this book. See|“Bibliography” on page 251 |

— Links to Other Online Books
If you are viewing the Adobe Portable Document Format (PDF) version of this
book, it may contain links to other books. A link to another book is based on
the name of the requested PDF file. The name of the PDF file for an IBM book
is unique and identifies both the book and the edition. The book links provided
in this book are for the editions (PDF names) that were current when the PDF
file for this book was generated. However, newer editions of some books (with
different PDF names) may exist. A link from this book to another book works
only when a PDF file with the requested name resides in the same directory
as this book.

How to Send Your Comments to IBM

IBM welcomes your comments. You can use any of the following methods:

» Complete and mail the Readers’” Comments form (if one is provided at the back
of this book) or send your comments to the following address:

IBM Corporation

Department 55JA, Mail Station P384
2455 South Road

Poughkeepsie, New York 12601-5400
U.S.A.

» Send your comments by FAX:
— United States and Canada: 1-845-432-9405
— Other Countries: +1 845 432 9405
» Send your comments by electronic mail to one of the following addresses:
— Internet: mhvrcfs@us.ibm.com
— IBMLink™ (US customers only): IBMUSM10(MHVRCFS)

© Copyright IBM Corp. 1991, 2005 Xi

Be sure to include the following in your comment or note:
» Title and complete publication number of the book
» Page number, section title, or topic you are commenting on

If you would like a reply, be sure to also include your name, postal or email
address, telephone number, or FAX number.

When you send information to IBM, you grant IBM a nonexclusive right to use or

distribute the information in any way it believes appropriate without incurring any
obligation to you.

Xil zVM: Diagnosis Guide

Summary of Changes

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change (in that edition only). Some product changes identified in this
summary may be provided through z/VM service by program temporary fixes
(PTFs) for authorized program analysis reports (APARS).

GC24-6092-01, z/VM Version 5 Release 2
This edition supports the general availability of z/VM V5.2.

64-bit Exploitation

z/NNM V5.2 exploits the 64-bit addressing capability of IBM z/Architecture, and CP
now uses storage above 2 GB for a much broader set of operations. Previously,
guest pages had to be moved below 2 GB for many reasons. For example, guest
I/0O buffers for both standard I/0O and QDIO were moved below 2 GB when an 1/0O
operation was initiated. Now I/O can be done using buffers anywhere in real
storage, and QDIO structures can reside above 2 GB, as can most CP control
blocks.

Prior to z/VM V5.2, storage addresses in the system execution space (the virtual
address space in which CP executes) were identity mapped to real storage. Now
only the CP nucleus and the prefix pages are identity mapped, and most of the
system execution space (also known as host logical storage) is not identity mapped.
CP tables and control blocks in the system execution space are now accessed by
their host logical storage addresses. Host logical storage pages may be backed
with frames in real storage, but backing frames are not necessarily contiguous.
Frames below 2 GB are used only when architecturally required, freeing CP to
exploit backing frames above 2 GB for most operations.

Support for 64-Bit Dump

The 64-Bit Dump support changes the various dump producers so that they create
dumps that include relevant storage above 2 GB if that storage is defined. Prior to
this release, all dump producers (Stand-Alone Dump, Hard Abend Dump, Soft
Abend Dump and VMDUMP) dumped storage only below 2 GB.

Support for Vector Facility Removed

Because the Vector Facility feature is not available on any servers that z/VM
supports, CP support for the Vector Facility has been removed.

Guest LAN Sniffing support
Tracing Guest LAN or VSWITCH paths also supported.

GC24-6092-00, z/VM Version 5 Release 1
This edition supports the general availability of z/VM V5.1.

© Copyright IBM Corp. 1991, 2005 xiii

SCSI FCP Disk Support

z/VM now supports SCSI FCP disk logical units (SCSI disks) for both system and
guest use. As part of this support, the following trace table codes are added: 2890,
28A0, 2C90, 2CA0, 2CB0, 6000, 6001, 6002, 6003, 6004, 6005, 6006, 6010, 6011,
6012, 6013, 6014, 6015, and 6016.

Removal of CP Functions

z/VM V5R1 is designed to operate only on IBM zSeries, or equivalent servers that
support IBM z/Architecture (64-bit). As a result, certain functions are not provided by
z/VNM V5R1:

* |IPL from a 31-bit image of the CP nucleus
» Preferred (V=R and V=F) virtual machines
» Paging of the CP nucleus

For information about the affected external interfaces, see the|z/VM: Migration

[Guide|

XiV zVM: Diagnosis Guide

Chapter 1. Introduction to Debugging

z/NNM manages the resources of a single computer such that multiple computing
systems appear to exist. Each “virtual computing system”, or virtual machine, is the
functional equivalent of a real processor. Therefore, the person trying to determine
the cause of a z/VM software problem must consider these separate areas:

* The Control Program (CP), which controls the resources of the real machine

» The virtual machine operating system running under the control of CP, such as
CMS (Conversational Monitor System) or GCS (Group Control System)

* The problem program that was running under control of the virtual machine
operating system when the problem occurred.

See:

Chapter 2, “Debugging Interactively,” on page 25| for information on how to debug
problems within a virtual machine

+ [Chapter 5, “Debugging CP,” on page 55 for information on CP

+ [Chapter 6, “Debugging CF Service Machine Problems,” on page 67|for
information on CF service machines

+ [Chapter 7, “Debugging CMS,” on page 69| for information on CMS

+ [Chapter 8, “Debugging CMS Pipelines,” on page 85| for information on CMS
Pipelines

[Chapter 9, “Debugging the SFS Server or CRR Recovery Server,” on page 95| for
information on the SFS and CRR server machines

[Chapter 10, “Debugging GCS,” on page 103|for information on GCS
[Chapter 11, “Debugging TSAF,” on page 181|for information on TSAF
[Chapter 12, “Debugging AVS,” on page 189 for information on AVS.

This guide contains information about using the Dump Viewing Facility and VM
Dump Tool for debugging. For complete information explaining how to use the
Dump Viewing Facility, see the [z/VM: Dump Viewing Facility book. For complete
information explaining how to use the VM Dump Tool, see the |z/VM: VM Dump Tool
book.

If a problem is caused by a guest operating system, see the publications pertaining
to that operating system for specific information.

If it becomes necessary to apply a Program Temporary Fix (PTF) to a component of
z/VM, see the |z/VM: Service Guidd for information on applying PTFs.

How to Start Debugging

A good approach to debugging is to:
1. Recognize that a problem exists
2. ldentify the problem type and the area affected

3. Analyze the data you have available, collect more data if you need it, then
isolate the data that pertains to your problem

4. Determine the cause of the problem and correct it, or report it to the appropriate
IBM Support Center.

© Copyright IBM Corp. 1991, 2005 1

Introduction to Debugging

Does a Problem Exist?

2

The most common problems occurring on your z/VM system or virtual machine are:
* Abnormal end (abend)

* Unexpected or incorrect result

* Infinite loop

* Wait state

* Hang condition

* Slow performance.

Abnormal End

The most obvious indication of a problem is the abnormal end (abend) of a
program. An abend occurs when an error condition that cannot be resolved by the
system causes a program to end prematurely. Whenever a program abnormally

ends, a message is issued. This message provides information that can help you
isolate the problem. A dump often accompanies an abnormal end. See

for a description of the various types of abends and their possible causes.

z/NM: Diagnosis Guide

Unexpected or Incorrect Result

Another obvious indication of a problem is unexpected or incorrect output or result.
If your output is missing, incorrect, or in a different format than expected, a problem
exists. For more information, see [‘Unexpected Results” on page 16,

Infinite Loop

A loop is a set of instructions that are run repeatedly as long as one or more
conditions are present. However, when the condition that is supposed to be
satisfied in the loop is never reached, an infinite loop occurs. If your program takes
longer to run than anticipated, or if your output is repeated more than expected,
your program may be in an infinite loop. For a description of different types of
loops, see [‘Loops” on page 17

Wait State

A z/VVM system or virtual machine is in a wait state between the time the system
asks for data and begins to receive it. No other processing can occur in a system or
virtual machine that is in a wait state. When the system or virtual machine is in a
disabled wait state, it accepts no incoming data. When the system or virtual
machine is in an enabled wait state, it continues to accept incoming data. Enabled
wait states occur frequently and are quite easily resolved or resolve themselves.
Disabled wait states are not easily resolved and almost always signal a serious
problem, but often a message is issued alerting you to a disabled wait. If your
program is taking longer than expected to run, the virtual machine may be in a wait
state. See[‘Wait States” on page 19|for a closer look at the common types of wait
states.

Hang Condition

A hang condition occurs when either CP cannot continue processing or a virtual
machine cannot be dispatched. As a result, z/VM halts processing. For more
information, see[‘Hang Conditions” on page 21

Slow Performance

Your system is not limited to the problems listed above. Other problems that are not
easily determined may appear to slow the system’s performance or cause
unproductive processing time. These can be caused by poor system tuning or
problems with your hardware. See the [z/VM: Performance|book for information
about system tuning and performance.

Identifying the Problem

Identifying problems is not always easy. An abnormal end is indicated by an error
message. Unexpected results become apparent after the output is examined.
Loops, wait state conditions, and hang conditions may not be as easy to identify as

an abend or unexpected results.

Introduction to Debugging

summarizes problem types and the areas where they may occur.

Table 1. z/VM Problem Types

Problem Type

Where Problem Occurs

Distinguishing Characteristics

Abend

CP

CF service machine
CMS

GCS

TSAF

AVS

For a complete discussion of reasons for abends and
system programmer’s actions, see the CMS, CP,
GCS, TSAF, and AVS abend code charts in the
appropriate component of the messages and codes
books.

Virtual machine abend (other
than CMS)

When z/OS or VSE abnormally ends on a virtual
machine, the messages issued and the dumps taken
are the same as they would be if z/OS or VSE
abnormally ended on a real machine.

CP may stop a virtual machine if an irrecoverable
machine check occurs in that virtual machine. The
system operator receives a message at the processor
console. Also, the virtual machine user is notified that
his virtual machine was terminated.

Unexpected Results

CP

If an operating system runs properly on a real
machine, but not properly with CP, a problem exists.
Inaccurate data in files, such as spool files, is an
error.

Virtual machine

If a program runs properly under the control of a
particular operating system on a real machine, but
does not run correctly under the same operating
system with CP, a problem exists.

Wait CP For a complete discussion of CP and loader wait
state codes, see the |z/VM: CP Messages and Codes|
book. See the|z/VM: System Operation|{book for
stand-alone dump codes.

Loop CP disabled loop The processor console wait light is off. The problem

state bit of the real PSW is off. No 1/O interrupts are
accepted.

Virtual machine disabled loop

The program is taking longer to run than anticipated.
Signaling attention from the disabled loop terminal
does not cause an interrupt in the virtual machine.
The virtual machine operator cannot communicate
with the virtual machine’s operating system by
signaling attention.

Virtual machine enabled loop

Excessive processing time is often an indication of a
loop. Use the CP QUERY TIME command to check
the elapsed processing time. If time has elapsed,
periodically display the virtual PSW and check the
instruction address. If the same instruction, or series
of instructions, continues to appear in the PSW, a
loop probably exists.

Chapter 1. Introduction to Debugging 3

Introduction to Debugging

Table 1. z/VM Problem Types (continued)

Problem Type

Where Problem Occurs Distinguishing Characteristics

Performance

System hang z/NVM cannot complete any tasks. No I/O interrupts
are accepted.

User hang The program is taking longer to run than anticipated.
No 1/O interrupts are accepted.

Immediate signs of problems within a user’s virtual machine are:
* Return codes
* Error messages.

Return Codes

A return code is a number generated by the software associated with a computer
program. This return code indicates to your program the condition that arose when
your machine tried to carry out the program. Based on this condition, the return
code influences your program in determining how subsequent processing of your
overall task should proceed.

You must design your program to respond to specific return codes in specific ways.
Your z/VM system—its system programming—is no different. Depending upon the
return code received from a program in its system software (or, for that matter, in an
application program that you are running on z/VM), your system is programmed to
react in a certain way.

Return codes differ in severity. Some conditions are handled more smoothly than
others.

For an explanation of the meaning of individual return codes, see the appropriate
component of the messages and codes books.

Messages

A message is a sentence or phrase transmitted by z/VM that describes a situation
or problem the system encountered while processing an instruction or command.

Like a return code, it describes a situation and influences a reaction to it. Unlike a
return code, which is generated for the benefit of a running computer program, a

message is issued for the benefit of the person who wrote the program or issued

the command.

z/VM has many messages and is programmed to generate a particular one when a
given situation or problem occurs.

Messages consist of a message identifier (for example, DMSACCO017E) and
message text. The identifier distinguishes one message from another. The text is a
phrase or sentence which either describes a condition that has occurred, or
requests a response from the user.

For an explanation of individual messages, see the appropriate component of the
messages and codes books.

Analyzing the Available Data

4 z/VM: Diagnosis Guide

Sources that are available to help identify and correct a problem include but are not
limited to:

* Adump

Introduction to Debugging

* A nucleus load map (NUCMAP)
* Registers

* The program status word (PSW)
* The console log

* Atrace

* The symptom record.

You may need to use one or more of the above sources, or others, to find exactly
where a problem occurred. For an explanation of individual abend codes, see the
appropriate component of the messages and codes books.

Dump
A dump is a record of the contents of your machine’s storage at a given moment.

For more information on dumps and how to use them, see Ehagter 4, “Creating g]
[Dump,” on page 49|and [Chapter 5, “Debugging CP,” on page 55.
Nucleus Load Map

A nucleus load map (NUCMAP or load map) is a file that contains the following
information:

» Alist of the storage addresses of all control sections (CSECTSs). A control section
is the part of a program that the programmer defines as a relocatable unit. It is a
block of code that can function properly in any part of storage. All elements of a
CSECT are loaded into adjoining locations in storage.

* The storage addresses of all modules loaded into the CP nucleus, CMS nucleus,
or GCS nucleus. The CP nucleus contains that portion of CP resident in host
storage. Similarly, the CMS or GCS nucleus is that portion of CMS or GCS
present in virtual storage.

» Alist of all modifications performed on the modules in the nuclei. This includes all
the maintenance that IBM has performed on the modules and all the
modifications your organization has made to them.

One load map exists for CP, another for CMS, and another for GCS. z/VM creates
a load map each time CP or CMS is built—that is, when your system is first
installed or after it is repaired or modified. ' In this manner the load maps are kept
up to date.

Load maps are useful particularly when you are dealing with an infinite loop. Load
maps also complement the information found in a dump. When you use one, you
should have the other handy.

Load maps can be found in the following locations:
* The CPNUC MAP file, on the MAINT virtual machine’s disk at virtual address
194, contains the CP NUCMAP.

e The CMSNUC MAP file, on MAINT’s disk at virtual address 193, contains the
CMS NUCMAP.

1. These activities are performed by the system programmer or system operator using the MAINT virtual machine. This is the virtual
machine you use to install, service, and maintain your z/VM system. The [z/VM: Guide for Automated Installation and Serviceland
|z/VM: Service Guidd explain these activities.

Chapter 1. Introduction to Debugging 5

Introduction to Debugging

6

Registers

A register is an area of storage specially set aside in your processor. Your machine
is equipped with a prefix register, 16 general purpose registers, 16 control registers,
16 access registers, and 16 floating-point registers.

General purpose registers contain information being manipulated by the user
program currently running. Floating-point registers hold numeric values associated
with some exponent. These are usually very small or very large numbers—for
example, 45.6 x 10'2. While general and floating-point registers contain data directly
related to the processing of a user application program, control registers are used
to calculate and keep track of certain values pertaining to the operation and
management of the z/VM system. Access registers can designate any address
space, including the current instruction space.

Your program uses a register to store a piece of data that it is currently using. A
register can contain a numeric or alphabetic value, an address, or an instruction
that the computer is currently using to do some small step in your overall task.

A register holds a piece of data only as long as it is needed. The traffic in and out
of any given register can be quite heavy. A great deal can be learned by examining
the contents of your system’s registers if a problem occurs.

The contents of your system’s registers are included in any dump. It is also possible
to examine the contents of your registers by issuing various commands and during
a trace.

Program Status Word

The PSW (program status word) indicates your system’s general status. There are
six different types of system PSWs that provide diagnostic information. Each one
has an old and new value. The PSWs are as follows:

* Restart

» External (EXT)

» Supervisor call (SVC)
* Program (PGM)

* Machine-check (MCH)
* Input/output (I/0).

The PSW format is described in detail in the ESA/390 Principles of Operation or
z/Architecture Principles of Operation. The state of your system, whether it is
waiting or processing, whether it can receive I/O interrupts or not, and the address
of the next instruction to be executed are reflected in these parts of the PSW:

Bit 6 Indicates whether your system accepts (or is enabled for) input/output (I/O)
interrupts. If this bit is set to 0, your machine is not enabled for 1/O. If this
bit is set to 1, your machine accepts I/O interrupts.

Bit 12 Indicates the architecture mode. It is 1 when in ESA/390 mode and 0 when
in z/Architecture mode.

Bit 14 Indicates whether your z/VM system is in a wait state. If this bit is set to 0,
your system is not in the wait state, and processing can proceed normally. If
this bit is set to 1, your system is in a wait state.

z/NM: Diagnosis Guide

Introduction to Debugging

If bit 14 is set to 1, the setting of bit 6 usually? indicates whether the wait
state is enabled (1) or disabled (0).

Bits 64—-127 (for z/Architecture mode) or 33-63 (for ESA/390 mode)
Contain the address of the next instruction your machine is set to process.

Examining the current PSW periodically may help you identify a loop. If the PSW
instruction address always has the same value, or if the instruction address has a
series of repeating values, the program probably is looping.

You can see the contents of the PSW by using the CP DISPLAY command with the
PSWG option for z/Architecture (64-bit) mode or the PSW option for ESA/390
(31-bit) mode. You can also determine the PSW by looking at a dump.

Console Log

A console log is a record of everything that has appeared on a certain virtual
machine’s console. This includes all commands, messages, return codes, and
results.

When problems arise in the system, you are generally interested in the console log
for the system operator's console. The log includes all:

* Messages and return codes that have been sent to the operator
+ Commands and instructions entered at the operator’s console
* Responses that the operator has made to requests for action by the system.

The console log can describe the sequence of events that lead to a malfunction,
error, or problem from the system’s point of view.

It is not always just the system operator’s console log that might help you. For
example, if you are having a problem with RSCS, the console log for the RSCS
virtual machine might help.

At the system operator’s console, the recording of the console log is automatic and
takes place at all times. To get a console log at other consoles you must enter the
command:

cp spool console start

to begin the recording. The best place for this command for CMS users is in the
PROFILE EXEC for the virtual machine in question, or in the PROFILE GCS for
GCS users. That way, you know a console log is always being recorded. You can
also enter the command from the command line and have it in effect temporarily.

Issue

cp spool console close

to create a console log of the information recorded up to this point and put the file
in your virtual printer. Recording continues until you log off the system or explicitly
stop it with the CP SPOOL CONSOLE STOP command.

To close and purge the spool file of an existing log, issue:
cp spool console purge

2. Bit 6 can be set to 0 and bit 14 set to 1 without the CPU being in a disabled wait state. For example, this could occur if bit 7 is on
and the program is waiting for an external interrupt.

Chapter 1. Introduction to Debugging 7

Introduction to Debugging

8

for more information.

z/NM: Diagnosis Guide

Traces

A trace is a chronological record of every major event that has taken place within
your z/VM system or within a virtual machine running there. A major event
corresponds to a program or set of instructions that your system or virtual machine
has run, representing a major accomplishment in an overall task. The trace shows
how each event affected virtual storage, registers, the PSW, and other aspects of
your system.

A trace is invaluable when trying to track down a problem, particularly in the case of
wait states, infinite loops, and unexpected output. Often, traces themselves suggest
solutions to the problem. In a trace, you see the overall effect of every event that
occurred before and after the problem arose.

When CP tracing is active in z/VM, system events are recorded as trace table
entries in real storage. The number of trace table pages available to a processor is
determined by the TRACE portion of the STORAGE statement in the system
configuration file. You can override the effect of the TRACE portion of the
STORAGE statement by using the CP_SET TRACEFRAMES command. The trace
table is described in the section titled [‘Trace Entries” on page 39

An internal trace table is maintained for GCS. Consult [‘Internal Tracing Facilities” on|

z/VM and GCS provide several commands you can enter to generate a trace of
your own. Each has certain characteristics that appeal to certain needs, as
explained below.

TRACE
A CP command that monitors events in a virtual machine. The TRACE
command monitors such events as instruction processing, 1/0 activity,
successful branching, or a change in a register or storage location. This
command records trace data in a trace entry that you can send to a virtual
console, a virtual printer, or both. For more information, see the
[Commands and Utilities Referencd. Also, review the section of this book
titled [‘Commands That Monitor Events” on page 29|

TRSAVE
A CP command that saves trace data. You can save CP trace table data in
system trace files or on tape. You can save trace data defined by the
TRSOURCE command in system trace files only. For more information, see

Chapter 3, “Using Traces to Debug,” on page 39 and the |z/VM: CF

Commands and Utilities Reference.

TRSOURCE
A CP command that defines a trace as an 1/O trace (IO), a data trace
(DATA), or a guest trace (GT). TRSOURCE also activates or deactivates a
trace, displays the status of a trace, and removes trace IDs from CP. For

more_information, see|Chapter 3, “Using Traces to Debug,” on page 39 and
the |z/VM: CP Commands and Ulilities Reference

ETRACE
A GCS command that initiates the recording of events. The ETRACE
command works with the TRSOURCE command. For more information, see

Chapter 10, “Debugging GCS,” on page 103 and the [z/VM: Group Control
System| book.

ITRACE
A GCS command that enables or disables the recording of events in the

Introduction to Debugging

GCS internal trace table. Rather than record events taking place in the
system as a whole, the GCS internal trace table records events within a
virtual machine or virtual machine group. For more information, see
the ITRACE Command and GTRACE Macro” on page 104]and the (z/VM:
Group Control Systen] book.

There are even more tracing tools for those interested in the Systems Network
Architecture (SNA). VTAM® and NCP provide SNA users with several types of
traces. These traces can record events that take place at several points in a
network as data travels from a virtual machine, through VTAM and NCP, to an SNA
device. Among those items you can trace in an SNA environment are:

» Buffer contents

* Input/output events

* Line activity

« DFSMS/VM® buffer use

» Transmission group activity

* Internal VSCS and VTAM events.

Detailed information is available in the VTAM Diagnosis Guide and the VTAM
Diagnosis Reference.

Symptom Records
A symptom record is a collection of data conveying basic information about the

z/VM software problem. Use the Dump Viewing Facility and the VM Dump Tool to
display this data. See the |z/VM: Dump Viewing Facilitj and the
books.

Determining the Cause

After you identify the type of problem, you must determine its cause. There are
recommended procedures to follow. These procedures are helpful, but do not
identify the cause of the problem in every case. Be resourceful. Use whatever data
you have available. If you do not find the cause of the problem after following the
recommended debugging procedures, you may need to perform desk-checking.

The section ['How to Use z/VM Facilities to Debug” on page 13 describes
procedures to follow in determining the cause of various problems that can occur in
CP or in the virtual machine. See [‘Commands That Monitor Events” on page 29 for
information on using the CP TRACE command to debug a problem program.

[Table 1 on page 3|summarizes the types of problems you may encounter in z/VM.

Data You Need Before Calling IBM for Assistance

If you need to call IBM software support for assistance, it is very important for you
to have the following information:

* A problem inquiry data sheet
» Alist of all applied maintenance for the module(s) involved
* The operator’s console log

» Verification that all known errors against the Program Update Tape (PUT) have
been applied

* The load map for the failing system.

Chapter 1. Introduction to Debugging 9

Introduction to Debugging

Problem Inquiry Data Sheet

The problem inquiry data sheet (see [Figure 1 on page 13) identifies information that
should be available to ensure that you get the correct solution from IBM. It might be
a good idea to make copies of the sheet, to have blank sheets available in case
you have to call IBM.

System Information: When completing the problem inquiry data sheet, you
should use the QUERY CPLEVEL command to help you determine these facts
about your system:

¢ The version, release and modification level
* The service level.

For example, if you were on a z/VM system and you entered

query cplevel

you would get:

z/VM VERSION v RELEASE r.m, SERVICE LEVEL yynn (64-bit)
GENERATED AT mm/dd/yy hh:mm:ss timezone
IPL AT mm/dd/yy hh:mm:ss timezone

v identifies the software version level.

rm
identifies the software release level and the release modification level.

SERVICE LEVEL yynn
identifies the software service level number. The number indicates the most
recent RSU service tape that has been applied. yy is the last 2 digits of the
year and nn is the sequential number of the RSU tape for that year. It cannot
indicate which individual updates have been incorporated into CP. The system
programmer can find out what individual updates have been incorporated by
using the VMSES/E tool. For more information, see the |z/VM: Service Guidg

GENERATED AT mm/dd/yy hh:mm:ss timezone

GENERATED AT mm/dd/yyyy hh:mm:ss timezone

GENERATED AT yyyy-mm-dd hh:mm:ss timezone
indicates the date and time (translated to the current active time zone) that the
CP system software was written to DASD. One of the above responses is
generated depending on the date format specified on the user’s default date
format.

IPL mm/dd/yy hh:mm:ss timezone

IPL mm/dd/yyyy hh:mm:ss timezone

IPL yyyy-mm-dd hh:mm:ss timezone
indicates the date and time the CP system software was last started. One of the
above responses is generated depending on the date format specified on the
user’s default date format.

Record this information on the problem inquiry data sheet.

CPU Information: The QUERY CPUID command should be used to help you to
determine what to enter for the CPU serial on the problem inquiry data sheet.

If you entered
query cpuid

you get:
CPUID = FF12069A20848000

10 z/VM: Diagnosis Guide

Introduction to Debugging

This is the 16-digit processor identification associated with the real machine. Ignore
the FF, which refers to a second level system. The 10 digits that follow the FF are
the CPU serial:

» The first six digits are the processor identification number
* The next four digits are the processor model number.

Ignore the last four digits of this 16-digit field.

Note: You can also obtain the system release level, service level, and CPU serial
number through the Dump Viewing Facility or VM Dump Tool if a dump was
created for the problem. See the description of the SYMPTOM subcommand
in the [z/VM: Dump Viewing Facilityand [z/VM: VM Dump Toolbooks for more
information.

Problem Inquiry Data Sheet Fields: The problem inquiry data sheet consists of
the following fields:

Customer
Enter the name of your business.

Date
Enter today’s date.

Problem #
Enter the problem number that IBM assigns to you when you call.

Access Code
Enter the customer number that the IBM marketing representative gives to you.

CPU Serial
Enter the 10-digit number from using the QUERY CPUID command, as
described above.

Severity
Enter 1, 2, 3, or 4. The severity codes mean:

1 You are unable to use the program, resulting in a critical impact on your
operations.

2 You are able to use the program, but you are severely restricted.

3 You are able to use the program with limited functions that are not critical to
overall operations.

4 You have found a way to circumvent the problem.

Operating System, Service Level, and Release Level
Enter the system information exactly as displayed in the first line of output from
the QUERY CPLEVEL command.

Failing Component
Enter the name of the component that you suspect is causing the problem (for
example, CP, CMS, TSAF). Include service level, release level, and other
information as appropriate.

Problem/Inquiry Description
Enter the reason for calling IBM software support.

Keywords
Indicate words that best describe the problem, using the provided checklist.

Documentation Available
Indicate the available documentation, using the provided checklist.

Chapter 1. Introduction to Debugging 11

Introduction to Debugging

Problem Tracking
Enter a log of your activity on the problem, including dates, names, and activity.

Resolution APAR #
Enter the APAR number assigned to the problem (if defect-related).

RSU Tape PTF #
Enter the RSU tape number on which the PTF for the resolution APAR resides.

Other
Enter any other information pertinent to this problem.

12 z/VM: Diagnosis Guide

Introduction to Debugging

Sheet 1 of
Customer: Date: Problem #:
Access Code: CPU Serial: Severity:
Qutput from QUERY CPLEVEL command :
Failing Component:
Problem/Inquiry Description:
Keywords:
Abend: Module: Wait State Code:
Label: Label: Label:
Loc: Loc: Loc:
Loop Addresses:
Incorrect Output (INCORROUT):
Message:
Performance:
Documentation Available:
Storage Dump o User's Routine _ Console Log _
Program Listing __ System Log . RSU Level .
Storage Map _ Diagnostic OQutput _ Service Level __
Test Data _ TP CONFIG List(s) VMLOAD List
Problem Tracking:
Date Name Activity
Resolution RSU Tape
APAR # PTF # Other

Figure 1. Problem Inquiry Data Sheet. Use this sheet to collect pertinent data before calling
IBM.

How to Use z/VM Facilities to Debug

After you have identified the problem and the area where it occurred, you can
gather the information needed to determine the cause of the problem. The type of
information you want to look at varies with the type of problem. The tools used to
gather the information vary depending upon the area in which the problem occurs.
For example, if the problem is a loop condition, you will want to examine the PSW.

Chapter 1. Introduction to Debugging 13

Introduction to Debugging

For a CP loop, an authorized user’s console must be used to display the PSW, but
for a virtual machine loop you can display the PSW by using the CP DISPLAY
command.

If a procedure tells you to dump storage using the CP DUMP command, you should
refer to |Chapter 4, “Creating a Dump,” on page 49.|

Abends

CP Abend

The following types of abnormal terminations (abends) can occur in z/VM:
« CP

» CF service machine

« CMS

» SFS or CRR Server

« GCS

* TSAF

+ AVS

* Virtual machine.

Whenever a program abnormally terminates, a message is issued. This message
provides information that can help you correct the problem. The following
descriptions provide guidelines for debugging each type of abend.

z/NVNM abnormally terminates when system integrity may be jeopardized. When this
happens, a dump is taken. Internal checks on control block fields often determine
whether CP issues an abend.

An abend dump includes two primary sources of diagnostic information:
* An abend code
» Symptom record information.

The abend code tells what module has issued the dump and what actions CP is
taking or has taken. The format of a CP abend code is:

mmmé###

where:

mmm identifies which module issued the abend. The complete module name is
prefaced by HCP (for example, HCPmmm).

H#i# is the code number.

For example, abend FREOO1 means that CP module HCPFRE issued the abend and
001 is the code number.

When the system terminates abnormally, you receive an error message. For an
explanation of error messages and abend codes, see the [z/VM: CP Messages and
book. The explanation for the abend code gives you a start in performing
diagnosis.

z/V\M issues two types of abends—hard and soft.

14 z/vM: Diagnosis Guide

Introduction to Debugging

Hard Abend

z/N\M issues a hard abend when it cannot isolate the error to a single virtual
machine. CP dumps all CP and free storage to a dump device. You can set the
dump device either at initialization or with the CP SET DUMP command. See the
lz/VM: CP Commands and Ultilities Reference for a description of the SET DUMP
command.

Soft Abend

z/NVM issues a soft abend when CP can isolate the error to a virtual machine or
when system integrity is not jeopardized by the error. A soft abend dump results,
giving only selected CP pages.

Reasons for the CP Abend

CP will stop and take an abnormal end dump under three conditions:

1. Program check in CP
Examine the program old PSW and the program interrupt code fields in the
prefix page (or page 0) to determine the failing module.

2. Module issuing the HCPABEND macro

Examine the SVC old PSW and abend code fields in the prefix page
(PFXABEND) of the dump to determine the module that issued the abend (SVC
4 for a soft abend) and the reason it was issued.

3. Operator forcing a CP system restart on the processor console

Examine the restart old PSW field in the prefix page to find the location of the
instruction that was processing when the operator forced a CP system restart.
The operator forces a CP system restart when CP is in a disabled wait state or
loop. Refer to your processor manual for the appropriate method to force a CP
system restart.

Use the dump to determine why CP terminated and then determine how to correct
the condition.

The DUMPLOAD utility lets you load the dump file from a spooled reader file. The
VMDUMPTL command can be used to display information from a CP dump. See
the [z/VM: CP Commands and Ultilities Referenced for more information on the
DUMPLOAD utility. See the |[z/VM: VM Dump Tool for information on the
VMDUMPTL command and its subcommands and macros.

CF Service Machine Abend

CMS Abend

For information on CF service machine abends, see [Chapter 6, “Debugging CF|
[Service Machine Problems,” on page 67.|

For information on CMS abends, see [Chapter 7, “Debugging CMS,” on page 69|

SFS or CRR Server Abend

GCS Abend

For information on SFS or CRR recovery server abends, see |Chapter 9,|
FDebugging the SFS Server or CRR Recovery Server,” on page 95

For information on GCS abends, see [Chapter 10, “Debugging GCS,” on page 103 |

Chapter 1. Introduction to Debugging 15

Introduction to Debugging

TSAF Abend

For information on TSAF abends, see [Chapter 11, “Debugging TSAF,” on page 181

AVS Abend

For information on AVS abends, see |Chapter 12, “Debugging AVS,” on page 189.|

Virtual Machine Abend (Other than CMS)

The abnormal termination of an operating system (such as z/OS or VSE) running
under CP appears the same as termination of the operating system on a real
machine. Refer to publications for that operating system for debugging information.
However, all of the CP debugging facilities may be used to help you gather the
information you need.

The CP VMDUMP command dumps virtual storage to a specified virtual machine’s
reader spool file. You can use the DUMPLOAD utility described in the
|Commands and Utilities Referencd to process the file created by the VMDUMP
command.

If you choose to run a stand-alone dump program to dump the storage in your
virtual machine, be sure to specify the NOCLEAR option (which is the default) when
you enter the CP IPL command. Although CP’s IPL simulator program is loaded into
a 4 KB page of the virtual machine’s virtual storage, CP restores the page to its
pre-IPL contents.

If the problem can be reproduced, it may be helpful to trace the processing using
the CP TRACE commands. Also, you can display and alter registers, control words
(such as the PSW), and data areas. The CP TRACE commands can be very helpful
in debugging because you can gather information at various stages in processing. A
dump is static and represents the system at only one particular time. Debugging on
a virtual machine can often be more flexible than debugging on a real machine.

z/NNM may stop a virtual machine if an irrecoverable machine check occurs in that
virtual machine. Hardware errors usually cause this type of virtual machine
termination. Such errors place the virtual machine into console function mode where
it can be made to continue processing on the main processor if you enter the CP
BEGIN command. In some cases a check-stopped virtual machine may be
indicative of a more pervasive error. A damaged page in an NSS might affect many
logged on users. Each user trying to use the NSS could be check-stopped in turn.
In another example, a product, such as VTAM running in a check-stopped Service
Virtual Machine (SVM) could cause an outage for each and all of its users.

Unexpected Results

The type of errors classified as unexpected results can range from operating
systems improperly functioning under CP to printed output in the wrong format.

If an operating system runs properly on a real machine but does not run properly
with CP, a problem exists. Also, if a program runs correctly under control of a
particular operating system on a real machine but does not run correctly under the
same operating system with CP, a problem exists.

16 z/VM: Diagnosis Guide

Introduction to Debugging

First, there are conditions (such as time-dependent programs) that CP does not
support. Be sure that one of these conditions is not causing the unexpected results
in CP. See the [z/VM: CP Planning and Administratior] book for a list of the
restrictions.

Next, be sure that the program and operating system running on the virtual machine
are the same as those that ran on the real machine. Check for the same:

* Job stream
» Copy of the operating system (and program)
» System libraries.

If you still cannot find the problem, look for an I/O problem. Try to reproduce the
problem while tracing all virtual 1/O instructions and interrupts with the CP TRACE
command. Compare the trace entries. A discrepancy may indicate that one of the
CP restrictions was violated, or that an error occurred in CP. Remember, however,
that some virtual machines may produce test subchannel (TSCH) or test I/O (T10)
loops while waiting for I/O to complete. This is often an usual occurrence and does
not necessarily signify an endless loop.

If unexpected results occur (such as TEXT records interspersed in printed output),
you may wish to examine the contents of the system or user files. Non-CMS users
may run any of the utilities included in the operating system they are using to
examine and rearrange files. See the ultilities publication for the operating system
running in the virtual machine for information on how to use the utilities.

CMS users should use the DASD Dump/Restore (DDR) utility to print or move the
data stored on direct access devices. See the |[z/VM: CP Commands and Ultilities
for more information on the DDR utility.

Loops

A loop occurs primarily when an instruction sets or branches on a condition
incorrectly. You can usually recognize the existence of a loop when productive
processing ceases and the program continually repeats the same series of PSW
instruction addresses. If I/O operations are involved and the loop is very large, it
may be extremely difficult to define, and may even include nested loops. The
problem in loop analysis is finding either the instruction that should open the loop or
the instruction that passes control to the set of looping instructions. To help you find
the problem in a loop, you may want to spool your console to record the
instructions or trace the instructions to the printer.

CP Disabled Loop

The processor operator should perform the following sequence when gathering
information to find the cause of a disabled loop:

1. Trace the instructions currently running in the processor.
2. Force a CP system restart to cause an abend dump to be taken.

3. Save the information collected for the system programmer or system support
personnel.

After the processor operator has collected the information, the system programmer
or system support personnel should examine it:

1. Use the instructions traced by the operator and the load map to determine the
modules that may be involved in the loop.

Chapter 1. Introduction to Debugging 17

Introduction to Debugging

2. If the cause of the loop is not apparent, examine the CP internal trace table in
the dump to determine the modules that may be involved in the loop.

3. Other information in the dump can be used to determine the condition that
caused the loop, such as:

« PSW

* General purpose registers

« Control registers

* Access registers

» Prefix page(s) of each CPU.

Virtual Machine Disabled Loop

When a disabled loop in a virtual machine exists, the virtual machine operator
cannot communicate with the virtual machine’s operating system. This means that
signalling attention does not cause an interrupt.

The virtual machine operator should perform the following sequence when trying to
find the cause of a disabled loop:

1. Enter the CP console function mode.
2. Use the CP TRACE command to trace the entire loop.

3. USE the CP DISPLAY command to display general purpose and control
registers as appropriate depending on when and how they are used.

4. Use the CP DUMP or CP VMDUMP command to dump your virtual storage. If
VMDUMP was used, use the DUMPLOAD utility to put the dump onto a disk.
For a dump of a ESA/390 Architecture guest, you can use the Dump Viewing

Facility or the VM Dump Tool to analyze the dump. For a dump of z/Architecture
guest, you must use the VM Dump Tool. For details, see the
[Viewing Facility| or |z/VM: VM Dump Tool book.

5. Examine the source code, if available.

Use the information just gathered, along with listings, to try to find the entry into the
loop.

If the operating system in the virtual machine itself manages virtual storage, it is
usually better to use that operating system’s dump program. CP does not retrieve
pages that exist only on the virtual machine’s paging device.

Virtual Machine Enabled Loop

The virtual machine operator should perform the following sequence when trying to
find the cause of an enabled loop:

1. Use the CP TRACE command to trace the entire loop. Display the PSW and the
general purpose and control registers.

2. Use the CP DUMP or CP VMDUMP command to dump your virtual storage. If
VMDUMP was used, use the DUMPLOAD utility to put the dump onto a disk.
For a dump of a ESA/390 Architecture guest, you can use the Dump Viewing
Facility or the VM Dump Tool to analyze the dump. For a dump of z/Architecture
guest, you must use the VM Dump Tool. For details, see the
[Viewing Facility or [z/VM: VM Dump Tool book.

3. Consult the source code to search for the faulty instructions, examining

previously ran modules if necessary. Begin by scanning for instructions that set
the condition code or branch on it.

18 z/VM: Diagnosis Guide

Introduction to Debugging

4. If the manner of loop entry is still undetermined, assume that a wild branch has
occurred and begin a search for its origin.

Wait States

No processing occurs in the virtual machine when it is in a wait state. When the
wait state is an enabled one, an I/O interrupt causes processing to resume.
Likewise, when CP is in a wait state, its processing ceases.

To help identify a wait state in your virtual machine, you can periodically enter the
command:

#cp indicate user

to display the resources used by the program. Compare the following resources:
* |0, which is the total number of nonspooled I/O requests issued

* READS, which is the total number of page reads that have occurred

* WRITES, which is the total number of pages written.

When these resources don’t change, the wait state probably exists.

CP Disabled Wait

CP enters a disabled wait state when system operation ends because of an error or
when system shutdown is complete. When CP or one of its service programs enters
a disabled wait state, it loads a wait state code into the program status word
(PSW). This PSW appears on your console at the end of the wait state message
you receive. For a description of the disabled wait state code and suggested
actions to take, refer to the message that has the same number as the wait state
code. For example: if the wait state code was 1010, you would look up message
HCP1010 in the |z/VM: CP Messages and Codes|book.

A disabled wait state usually results from a hardware malfunction. Most disabled
wait states occur during the initial program load (IPL) process. Many can be
attributed to normally correctable hardware errors that may cause a wait state
because the operating system error recovery procedures are not yet accessible.
Other frequent disabled wait states during IPL involve the system resident device
(SYSRES), which may have been formatted improperly, defined with the wrong
device type, or may have experienced an I/O error.

Disabled wait code 1010 is often found when installing a z/VM system for the first
time. This code indicates that no console was available; typical reasons are:

* No definition for a console on the OPERATOR_CONSOLES statement in the
system configuration file or the console was defined incorrectly

 If running in virtual mode, the CP TERMINAL CONMODE 3270 command was
not entered or a CP DEFINE CONSOLE command was entered incorrectly.

Codes 961, 964, and 9025 are common and can occur after the system is shut
down.

A severe machine check during post-IPL processing can also cause a CP disabled
wait state.

Chapter 1. Introduction to Debugging 19

Introduction to Debugging

CP Enabled Wait

If you determine that CP is in an enabled wait state, but that no 1/O interrupts are
occurring, either there may be an error in CP or CP may be failing to get an
interrupt from a hardware device. Force a CP system restart at the operator’s
console to cause an abend dump to be taken. Use the abend dump to determine
the cause of the enabled (and noninterrupted) wait state. After the dump is taken,
IPL the system.

Using the dump, examine the:
* Virtual machine definition blocks (VMDSCAN)
* Real device block (RDEVBK).

See [‘Reading CP Abend Dumps” on page 55 for specific information on how to
analyze a CP dump.

Virtual Machine Disabled Wait

CP does not allow the virtual machine to enter a disabled wait state or certain
interrupt loops. Instead, CP notifies the virtual machine operator of the condition
with one of the following messages:

HCPGIR450W CP entered; disabled wait PSW psw

HCPVIX4521 CP entered; external interrupt loop
HCPGIR453W CP entered; program interrupt loop

and enters the console function mode.

An explanatory message from the operating system running in your virtual machine
may precede the HCPGIR450W message. If you did not receive an explanation,
examine the PSW portion of the message. To interpret the wait state code in the
PSW, refer to the section on wait states of the corresponding manual for the system
you were running in your virtual machine. Take the specified corrective action, then
re-IPL the virtual system.

An Example of a Virtual Machine Disabled Wait
You were running CMS and received the message:

HCPGIR450W CP entered; disabled wait PSW 000A0000 00000070
This means that CMS received a virtual machine check. Re-IPL CMS and try again.

For message HCPVIX452I, determine why the external interrupt new PSW is
enabled for an interrupt condition that does not clear upon acceptance (that is, the
timer is not expected to contain a negative value).

To determine the reason for message HCPGIR453W, examine the program check
information in page zero of your virtual storage. If this error occurred immediately
after the IPL command, the problem may be that you are trying to run a
System/390® guest in an XC virtual machine, or the reverse. To correct this error,
enter:

1. The CP QUERY SET command to find out the current MACHINE setting.
2. The CP SET MACHINE command to select the proper virtual machine.

If the virtual machine was running disconnected when the loop occurred, the system
logs it off. If this happens, you may need to reproduce the interrupt loop with the
virtual machine running connected to a console. To continue, IPL the virtual system
again.

20 z/VM: Diagnosis Guide

Introduction to Debugging

To examine the contents of storage locations, registers, and control words on a
terminal, use the CP DISPLAY command. Some of the data you can see includes:

* The program status words

* The general-purpose registers

* The control registers

* The storage contents of your virtual machine.

Then use the CP DUMP or CP VMDUMP command to dump your virtual storage. If
VMDUMP was used, use the DUMPLOAD utility to put the dump onto a disk. For a
dump of a ESA/390 Architecture guest, you can use the Dump Viewing Facility or
the VM Dump Tool to analyze the dump. For a dump of z/Architecture guest, you
must use the VM Dump Tool. For details, see the [z/VM: Dump Viewing Facility| or
lz/VM: VM Dump Tool book.

If you cannot find the cause of the wait or loop from the information just gathered,
try to reproduce the problem, this time tracing the processing with the CP TRACE
command.

If CMS is running in the virtual machine, you may also use the CMS debugging
facilities to display information or trace the processing. See[‘Using CMS to Debug’]

for more information.
Virtual Machine Enabled Wait

If the virtual machine is in an enabled wait state, try to find out why no 1/O or
external interrupts have occurred to allow processing to resume.

CP treats one case of an enabled wait in a virtual machine the same as a disabled
wait. If the virtual machine does not have the “real timer” option, CP issues the
message:

HCPGIR450W CP entered; disabled wait PSW psw

Because the virtual timer is not decreased while the virtual machine is in a wait
state, it cannot cause the external interrupt. The “real timer” runs in both the
problem state and wait state and can cause an external interrupt that allows
processing to resume. The clock comparator can also cause an external interrupt.

Hang Conditions

A hang condition occurs when either CP cannot continue processing or a virtual
machine cannot be dispatched. As a result, z/VM halts processing.

When gathering data about hang conditions, keep in mind that a delay may occur
between the time the error-causing request is issued and the time the system
hangs. The module running when the hang occurs may not be the module
responsible for the hang. As a result, some tools may provide no useful diagnostic
data. For example, CP continuously creates trace entries in a trace table for each
active processor in your configuration. Later trace entries may be written over the
trace entry describing the event that caused the hang.

There are two types of hangs:
* System
* User.

Chapter 1. Introduction to Debugging 21

Introduction to Debugging

System Hangs

User Hangs

System hangs occur when z/VM cannot perform any tasks to completion.

The best way to handle a system hang is for the hung system’s operator to restart
z/VVM from the operator’s console. At that point, CP issues an SVC002 abend dump
and attempts a restart.

Diagnosing the cause of a system hang can be difficult. The following actions are

starting points:

* Locate the active virtual machine descriptor block (VMDBK) to determine which
user was running at the time of the dump. By looking at the scheduling controls
(VMDSLIST and VMDSTATE) in that VMDBK, you can determine if this was the
active VMDBK and what the user was doing.

You can use the VMDUMPTL command of the VM Dump Tool for this. See the
[z/VM: VM Dump Tool for more information about the VMDUMPTL command.

» Check the restart old PSW. It points to the last instruction before the restart.
* Examine any trace entries available.

A user hang occurs when a virtual machine is no longer dispatched by CP. You
need to determine if the hang was caused by z/VM or the operating system you are
running in the virtual machine. The first step is to look at the operating system
running in the virtual machine to determine if it is hung.

One way of determining that the virtual machine is hung is to attempt a #CP
command. (For more information on issuing CP commands with #CP, see the
|CP Commands and Utilities Referencd) For instance, entering the command:

#cp indicate user

causes one of two things to appear on your screen if you are in line mode:
1. Information about your virtual machine, if it is not hung
2. Nothing, if your virtual machine is hung.

If your virtual machine appears to be hung and it is not, you can enter the
command:

#cp indicate queues

If the user is in the eligible list, then over-committing storage by entering the SET
SRM STORBUF command can move the user off the eligible list and onto the
dispatch list. See the [z/VM: Performance|book, specifically the section on tuning the
storage subsystem for more information. As with a system hang, the best source of
information is the VMDBK. From an authorized user, locate the hung user’s
VMDBK. Check the scheduling and dispatching controls (VMDSLIST and
VMDSTATE) in the hung user's VMDBK to determine what state the user was in
when the hang condition occurred. If you cannot free the user based on the cause
of the hang condition, you may need to force the user off and log the user on again.
As a last resort, you may need to restart z/VM from the operator’s console. This will
create an SVC002 abend dump that can be used to do more diagnosis.

22 z/VM: Diagnosis Guide

Introduction to Debugging

Use of z/VM Debugging Commands

There are many commands that are useful for interactively debugging a problem.
The chapters that follow contain many examples of commands that can be used
with the different components of z/VM. However, the commands that you use are
not limited to the examples that are given. Any commands or locally produced
routines can be used for debugging a problem.

Chapter 1. Introduction to Debugging 23

24 z/VM: Diagnosis Guide

Chapter 2. Debugging Interactively

CP provides interactive commands that control the system and enable the user to
control his virtual machine and associated control program facilities. The virtual
machine operator using these commands can gather much the same information
about his virtual machine as the operator of a real machine gathers using facilities
on the processor console.

Several of these commands (for example, CP DISPLAY or CP STORE) examine or
alter virtual storage locations. When CP is in complete control of virtual storage (for
example, as in the case of CMS and GCS) these commands run as expected.
However, when the operating system in the virtual machine itself manipulates virtual
storage (for example, as in the case of MVS or VSE), you should be very cautious
if you use these CP commands.

This chapter presents an overview of the z/VM commands used for debugging.
Instructions for using the commands discussed in this chapter are in the following
books:

* |z/VM: CP Commands and Ultilities Reference|
* |2/VM: Dump Viewing Facility|

You can use the following categories of commands to help diagnose problems
interactively:

* Commands that display and dump machine data

» Commands that set and query system features, conditions, and events
+ Commands that monitor events

+ Commands that alter the contents of storage

» Commands to collect and alter system information.

Commands That Display and Dump Machine Data

The CP DISPLAY command allows a user to display data from several real and
virtual machine components at a terminal. The CP DUMP command allows a user
to print data from several real and virtual machine components at a printer. The
data that can be displayed or printed is controlled by the privilege class of the user.
See the [z/VM: CP Commands and Utilities Reference for more information on these
commands.

Use the CP DISPLAY command to display the following kinds of control information
at your terminal or the CP DUMP command to print the following kinds of control
information on a printer.

* The contents of first-, second-, and third-level storage

* The contents of storage in address spaces of XC virtual machines
» Storage keys

» Prefix register

» General purpose registers (GPRs)

* Floating-point registers

« Control registers

* Access registers

* Crypto domain index registers

© Copyright IBM Corp. 1991, 2005 25

Debugging Interactively

« PSW

* The subchannel information blocks (SCHIBSs)
* Linkage stacks

* Virtual machine host access list.

Terminal Output

You can use the DISPLAY command to examine the general purpose registers,
floating-point registers, control registers, access registers, and crypto domain index
register. For example, the commands:

display gg

display g

display gl

display g2-5

display y

display x7

display ar

display cdx

result in displays of all the GPRs (display gg or display g), GPR1, a range of GPRs
2 through 5, all the floating-point registers, control register 7, all access registers,
and the crypto domain index register, respectively.

The DISPLAY command also displays the PSW and SCHIB:

display pswg
display psw
display schib

Class G users can display virtual machine storage information. Class C or E users
can display first level-storage information by using the DISPLAY H command. The
examples that follow are examples of virtual machine storage. First-level storage
output is similar except that the displayed line begins with H instead or R. The
storage information is displayed at your terminal in either of the following formats:

» Four-byte groups, aligned on fullword boundaries, hexadecimal format, with four
fullwords per line. For example, if you enter the DISPLAY command as:

display 1026-102c

you receive the response:
ROOOO1IO24 XXXXXXXX XXXXXXXX XXXXXXXX F6

» 16-byte groups, aligned on 16-byte boundaries, hexadecimal format, with four
fullwords and EBCDIC translation per line. For example, if you enter the
DISPLAY command as:

display t1026-102c

The response is:

(EBCDIC trans.)
ROOOOIOZ20 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX FO *................ *

You can also specify the area of storage to be displayed by entering a hexadecimal
byte count such as:

display 1024.12
The response displays 20 bytes as follows:

ROOOO1024 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX F6
ROO0O1034 XXXXXXXX

26 z/VM: Diagnosis Guide

Printer Output

Debugging Interactively

In addition, the storage key is displayed on the first line, as well as at every page
boundary.

The previous responses illustrate the byte alignment that takes place in each of the
two display formats.

If the first location to be displayed is not on the appropriate 4- or 16-byte boundary,
it is rounded down to the next lower boundary that applies.

If the last location to be displayed does not fall at the end of the appropriate 4- or
16-byte group, it is rounded up to the end of that group.

If you enter:
display k1024-3800

the storage keys that are assigned to each 4K segment of the specified storage
area are displayed. For example, the response might be:

ROOOO1000 TO OO37FF KEY=F6
ROOOO3800 TO 003800 KEY=EO

Contiguous 4K segments with identical storage keys are combined.

To display all storage keys, enter:
display k0-end

You can display any of the control registers. For example, enter:
display x1 4 a

and receive the response:

ECR 1
ECR 4
ECR 10

XXXXXXXX
XXXXXXXX
XXXXXXXX

With the DUMP command you can dump the contents of all available registers, the
PSW, the virtual machine’s host access list, and the storage keys, along with any
specified area of virtual storage, to the virtual machine’s printer.

To print only the registers, the PSW, and the storage keys, you need only enter:
dump 0

To also print an area of virtual storage, you can specify the beginning and ending
hexadecimal locations:

dump 1064-10ff

You can also specify in hexadecimal the beginning location and the number of bytes
to be dumped:

dump 1064.9b

If you are printing a series of dumps, you can identify each one by including its
identification on the DUMP command line, following an asterisk:

dump 1000-2000 * dump no. 1

Chapter 2. Debugging Interactively 27

Debugging Interactively

When you direct dump output to a printer, the dump output is mixed in with any
printed program output. If you want dump output separated from other printed
output, use the CP DEFINE command to define a second printer. Dump output is
always sent to the virtual printer having the lowest address, so you must define the
dump printer at a address below the one used for program output. If the printer is
defined in the z/VM director as address O0E and you enter:

define printer 006

The dump output will go to the printer at address 006 and any other printed output
will go to the printer at address OOE.

To print the dump data on the real printer you must first close the virtual printer.
Enter:

close 006
This closes the dump data spool file and releases it for processing on a real printer.

You can use the CP VMDUMP command to dump the storage of your virtual
machine. Then use the DUMPLOAD utility to put the dump onto a disk. For a dump
of a ESA/390 Architecture guest, you can use the Dump Viewing Facility or the VM
Dump Tool to analyze the dump. For a dump of z/Architecture guest, you must use
the VM Dump Tool. For details, see the [z/VM: Dump Viewing Facility| or|z/VM: VM

book.

When you enter at the terminal:
vmdump 150-200

or
vmdump 400:500

CP dumps the contents of virtual machine storage at the hexadecimal addresses
between X'150' and X'200' or between X'400' and X'500', respectively.

If you enter:
vmdump 150.50

CP dumps the contents of virtual storage starting at X'150' for a total of X'50' bytes.

If you enter:
vmdump 150.al1

CP dumps the contents of virtual storage from location X'150' to the end of the
virtual machine address space, including guest storage and all the DCSSs above
guest storage.

Commands That Set and Query System Features, Conditions, and

Events

The SYSTEM and SET commands set system-controlled functions and events; the
QUERY command lets you determine the status of those settings.

The SYSTEM command is a privilege class G command that simulates the RESET
and RESTART functions on a real computer console. You can also use it to clear

28 z/VM: Diagnosis Guide

Debugging Interactively

storage and store status in a virtual machine. The SYSTEM command is described
in the [z/VM: CP Commands and Ultilities Reference

Some operands of the SET command useful for debugging are MSG, SMSG, WNG,
EMSG, and IMSG. The messages resulting from these settings may be useful to
you while you are debugging.

The SET MSG function determines whether you receive messages sent by other
users by way of the MSG command.

The SET SMSG command turns on or off a virtual machine’s special message flag.
If the virtual machine has issued DIAGNOSE code X'68' (AUTHORIZE), this flag
determines whether the virtual machine accepts or rejects messages sent by way of
the SMSG command — when the flag is on, messages are accepted.

The SET WNG function determines whether you receive warning messages.

The SET EMSG command controls error message handling. Messages can be
displayed in several ways depending upon how this command is entered. If SET
EMSG ON is specified, both the message identifier and text are displayed. If SET
EMSG TEXT is specified, only the message text is displayed. If SET EMSG CODE
is specified, only the identifier is displayed. If SET EMSG IUCV is specified, both
the error code and text are passed to the virtual machine through IUVC if a
connection to the message system service exists. If no [IUCV connection exists, the
message is handled as if SET EMSG ON had been entered. You can also specify
SET EMSG OFF so that no error messages are displayed. When you log on,
EMSG is set to ON. Because it displays the complete message, this setting is
useful when you are debugging. The information contained in the message identifier
is especially helpful. It contains the name of the component and module that issued
the message as well as a message number which makes it easier to locate in the
[z/VM: CP Messages and Codes book.

The SET IMSG command controls whether certain informational responses issued
by some CP commands are displayed at the terminal. Also, the SET IMSG
command determines whether you receive messages from CP when other users
spool reader, printer, or punch files to your virtual machine.

When you are debugging, it may be useful to have all messages displayed at your
terminal.

The SET RUN command controls whether the virtual machine stops when the
attention key is pressed.

The QUERY command displays the status of features and conditions set by the
SET command for your virtual machine. When you log on, the MSG, EMSG, IMSG,
and WNG operands of the SET command are set ON, and the SMSG and RUN
operands are set OFF. To verify these settings, use the QUERY SET command.

Commands That Monitor Events
The TRACE command monitors events that occur in your virtual machine. Some of
the events that you can trace include:
* Instruction processing
» Storage alteration
* Register alteration

Chapter 2. Debugging Interactively 29

Debugging Interactively

* 1/O activity.

The TRACE command has many options. The primary operands allow you to
selectively choose the events to monitor. Each of the primary operands used with
the TRACE command establishes trace traps. A trace trap is a programming
function that captures information about an event in your virtual machine. For
example, to trace all events, enter:

trace all

To trace supervisor calls, program interrupts, and changes to the access registers,
enter:

trace svc
trace prog
trace ar

Continuing with this example, if, after specifying multiple activities to be traced, you
decide to stop tracing one or more of them, enter:

trace delete trapl
trace delete trap2

where trap1 and trap2 are the identifiers for the program interrupt and access
register trace traps. Tracing is now confined to SVCs only.

You can also specify multiple trace events on a single command by using the
TRACE GOTO command to specify the name of a trace set that contains a list of
trace commands to be run. To define the named trace set, enter:

trace goto name
trace svc
trace prog
trace ar

To activate the named trace set, enter:
trace call name

To end the named trace set, enter:
trace end

or
trace return

Controlling the Trace Information

There are several common options for controlling the amount of information you
receive when you are using the TRACE command and how the information is
received.

For example, whenever you are recording trace output to display at your terminal,
the virtual machine stops running and enters the CP console read environment after
each output line. If you do not want program processing to halt every time a trace
output message is issued to the terminal, you can use the RUN option:

trace svc run
In the above example, the RUN option is used with a SVC trace. Entered in this

way, the command lets you watch supervisor call activity in your program without
halting processing every time a call occurs.

30 z/VM: Diagnosis Guide

Debugging Interactively

If you do not require your trace output immediately, you can direct it to the printer,
so that your terminal does not receive any information at all. Also, tracing to the
terminal takes you out of fullscreen mode. You may want to direct your trace output
to the printer to preserve the fullscreen environment if you are tracing a fullscreen
application (for example, XEDIT):

trace inst printer

When you direct trace output to a printer, the trace output is mixed in with any
printed program output. If you want trace output separated from other printed
output, use the CP DEFINE command to define a second printer. Trace output is
always sent to the virtual printer having the lowest address, so you must define the
trace printer at a address below the one used for program output. If the printer is
defined in the z/VM director as address 00E and you enter:

define printer 006

The trace output will go to the printer at address 006 and any other printed output
will go to the printer at address OOE.

When you finish tracing, use the CP CLOSE command to close the second virtual
printer file:

close 006

If you want trace output at the printer and at the terminal, you can use the BOTH
option:
trace all both

Trace output is always produced after the instruction is processed.

Restricting the Trace to an Address Range

The common options more clearly define the trace traps set by the primary
operand. The PSWA option lets you restrict instruction tracing to a particular
address range. Note that the address range remains in effect until you turn off the
trace element set up by the TRACE command.

For example, entering the command:
trace instruct pswa 20000

causes program processing to halt after the instruction at location X'20000' is
processed.

The following command:
trace instruct pswa 20000-20400

traces all the instructions within the range of X'20000' and X'20400' and produces
output for each instruction.

To see what events are currently being traced, enter:

query trace

For detailed examples of tracing programs in a virtual machine, see the
\Virtual Machine Operation book.

Chapter 2. Debugging Interactively 31

Debugging Interactively

Selectivity

You can use many of the TRACE common options to increase selectivity. Using
TRACE, it is possible to limit tracing to a specific instruction or set of instructions.
For example, to monitor only LR instructions (operation code X'18'), enter:

trace instruct data 18

When the NORUN option is in effect, program processing halts after each
monitored event. When the RUN option is in effect, program processing continues
after each event. TRACE also counts occurrences between NORUN and RUN.
These options are STEP, STOP, PASS, and SKIP. For example, to halt program
processing after 5 instructions in the range X'20000' to X'204FF' have been run,
enter:

trace instruct pswa 20000.500 step 5
Program processing halts and enters the CP command environment.

Although the STEP option lets you step through your program more quickly without
giving up all control, every monitored instruction is displayed. If many instructions
are processed before the problem occurs, you may need to frequently clear your
screen. You can change the frequency with which events are displayed by using the
PASS option. Ordinarily, every successful event is displayed. However, using the
PASS option makes it possible to specify the number of monitored events you want
to skip before displaying one. For example, to skip the display of 100 instructions
and display the 101st, enter:

trace instruct pass 100

Tracing Successful Events

Another method of finding the failing instruction is to use the TRACE COUNT
command to count the successful trace events in your virtual machine, and the
TRACE TABLE command to display a list of successful branch instructions. If the
program is abending with any sort of program exception, load the failing program
and enter the CP command:

trace prog

Follow this with the command:
trace instruct range 20000.500

(assuming the program is loaded at location X'20000' and is X'500' bytes in length).
Then enter the command:

trace count

Next start the failing program. No trace output is produced while the COUNT option
is in effect. When the program interrupt occurs, enter the QUERY TRACE command
to display the current count:

query trace

You can trace the program after using the TRACE PASS option to get close to the
problem.

You can also use TRACE COUNT in conjunction with more specific trace elements
to produce the desired results. For example, if a problem occurs as a result of
processing an SVC 202 and the failing program issues many SVC 202s before
failing, trace only SVC 202s (operation code X'0ACA") and use TRACE COUNT to
count the occurrences. First, load the failing program and then enter:

32 z/VM: Diagnosis Guide

Debugging Interactively

trace svc aca
trace count

and start the program. When the error occurs, enter a QUERY TRACE to check the
count.

query trace

You can trace the program after using the TRACE PASS option to get close to the
problem.

For detailed examples, see the [z/VM: Virtual Machine Operation book.

Tracing Storage Alteration

You can use the TRACE command to trace the alteration of storage in the user’s
virtual machine. If you specify TRACE STORE, then whenever an instruction places
a value into storage, that event is traced. See the usage notes for the TRACE
STORE command in the |z/VM: CP Commands and Utilities Reference for a list of
exceptions to the above statement. It is not necessary that this value be different
from the previous value.

It is also possible to monitor the alteration of storage to a specific value. For
example:

trace store into 20100 data 112757

monitors instructions that cause the storage at location X'20100' to become
X'112757'. Note that these instructions are traced even if the value at location
X'20100' was already X'112757' before processing any instructions.

The TRACE CMD Option

You can use the CMD option of the TRACE command to run any CP command
(except SLEEP) whenever a particular event occurs. For example:

trace instruct pswa 20000.500 run
trace store 204f0-204ff pwsa 20000.500 run cmd display 204f0-204ff

traces the processing of every instruction in the range X'20000' through X'204FF'
and displays the contents of storage at X'204F0Q' through X'204FF' every time any
storage within the range X'204F0' through X'204FF' is altered by an instruction in
the range X'20000' through X'204FF".

Also, you can use the CMD option to allow a program to continue at a specific
address whenever a particular event occurs. For example:

trace instruct pswa 20000.500 printer
trace branch into 0 run cmd begin 24f28

causes program processing to continue at location X'24F28' whenever a branch to
location 0 occurs. Processing continues after the instruction is displayed. When
program processing resumes at location X'24F28' and a subsequent branch to zero
occurs, processing again begins at location X'24F28'. This can result in a loop. You
can use the CMD option to prevent this. For example, if LINEDIT is on, and the
escape character is set to " and the line end character is #, enter:

trace instruct 20000.500 printer
trace branch into 0 run cmd trace clear branch"#begin 24f28

turns off the branch trace element and causes program processing to continue at
location X'24F28' after the instruction is displayed.

Chapter 2. Debugging Interactively 33

Debugging Interactively

The commands associated with each trace element are run whenever the event
described by the trace element occurs. The commands are run in the order in which
they appear in the set of events.

Note: If you enter a CP command while commands are being processed by
TRACE, the output from the commands may be interleaved.

After you have specified the CMD option for a particular trace element, the CMD
option remains in effect until the trace element is turned off or until you change it.
To change the option, see the |z/VM: Virtual Machine Operation|book.

Stopping the TRACE

When you stop tracing, you must also enter the CLOSE command to release the
spooled trace output file for processing:

trace end
close vdev

For a more complete explanation, see [‘Controlling the Trace Information” on page]

Commands That Alter the Contents of Storage

| Altering Contents of Virtual Machine Storage (STORE Guest

| Command)
|

Use the CP STORE (Guest Storage) command to alter the contents of specified
registers and locations in virtual machine storage. The contents of the following can
be altered:

* The contents of second-, and third-level storage

» The contents of storage in address spaces of XC virtual machines
* General purpose registers

* Floating-point registers

* Floating-point control registers

« Control registers

* Access registers

* Crypto domain index registers

« PSW

Virtual storage can be altered in either fullword or byte units.

When using fullword units, the address of the first positions to be stored must have
either an L or no prefix. Each fullword operand can be from one to eight
hexadecimal digits in length. If less than eight digits are specified, they are
right-justified in the fullword unit and padded to the left with zeros. For example, the
command:

store 1024 46a2

or
store 11024 46a2

results in X'000046A2' being stored in locations X'1024' through X'1027".

34 z/VM: Diagnosis Guide

Debugging Interactively

On the other hand, the command:
store 1024 46 a2

implies storing two fullwords and results in the storing of X'00000046000000A2" in
locations X'1024' throughX'102B'.

If the starting location is not a multiple of a fullword, it is automatically rounded
down to the next lower fullword boundary.

You can store in byte units by prefixing the start address with an S. The command:
store s1026 dld6c5

stores X'D1D6C5' in locations X'1026' through X'1028'. Note that the data storage is
byte-aligned. If an odd number of hexadecimal digits is specified, CP does not store
the last digit, you receive an error message, and CP ends the function. For
example, if you specify:

store s1026 dld6c

CP stores d1 at X'1026' and d6 at X'1027'; when CP attempts to store c, it
recognizes an incomplete hexadecimal digit, and does not store the last digit.

You can store data into one or multiple consecutive registers.

General and control registers are loaded in fullword units that are right-justified and
padded to the left with zeros. For example, entering:

store g4 123456

loads GPR 4 with X'00123456'. The following command:
store g4 12 34 56

loads GPRs 4, 5, and 6 with X'00000012', X'00000034', and X'00000056"',
respectively.

Floating-point registers are loaded in doubleword units. Each doubleword operand
can be from 1 to 16 hexadecimal digits in length. If less than 16 digits are specified,
they are left-justified in the doubleword unit and padded to the right with zeros. For
example:

store y2 00123456789

loads floating-point register 2 with the value X'0012345678900000'".

Altering Contents of Host Storage (STORE Host Command)

Privilege class C users can use the CP STORE (Host Storage) command to alter
the contents of host storage (first-level storage). For example, the STORE (Host
Storage) command can be used to alter information in the old and new PSWs. See
the [z/VM: CP Commands and Utilities Referencd for details.

Simulating the Hardware Store Status Facility (STORE STATUS)

You can use the STORE STATUS command to simulate the hardware store status
facility. Selected virtual machine data is stored in permanently assigned areas in
low storage. Enter:

store status

Chapter 2. Debugging Interactively 35

Debugging Interactively

The data stored by the STORE STATUS command is:

Table 2. Non-z/Architecture mode guest

Address
Length Content

Dec Hex

163 A3 1 | Architectural-mode id (X'00")

212 D4 4 | Extended save area address. See note below.

216 D8 8| CPU timer

224 EO 8 | Clock comparator

256 100 8| Current PSW

264 108 4| Prefix register

288 120 64 | Access registers 0 through 15

352 160 32 | Floating-point registers 0, 2, 4, 6

384 180 64 | General registers 0 through 15

448 1CO 64 | Control registers 0 through 15

Note: The extended save area address is used only if it is provided and
floating-point extensions are enabled. When the extended save area is
available, the virtual machine’s floating-point registers 0 through 15 and
floating-point control register are stored there.

Table 3. z/Architecture mode guest

Address
Length Content
Dec Hex

163 A3 1 | Architectural-mode id (X'01")
4608 1200 128 | Floating-point registers 0 through 15
4736 1280 128 | General registers 0 through 15
4864 1300 16 | Current PSW
4888 1318 4 | Prefix register
4892 131C 4 | Floating-point control register
4900 1324 4| TOD programmable register
4904 1328 8| CPU timer
4913 1331 7 | Clock comparator
4928 1340 64 | Access registers 0 through 15
4992 1380 128 | Control registers 0 through 15

Note: If the operating system that is running in your virtual machine operates in the
basic control mode, these areas of low storage may be used for other
purposes. You should not use this facility under these conditions.

For detailed information about these commands, see the |z/VM: CP Commands and

Utilities Reference,

When debugging, you may find it advantageous to alter storage, registers, or the
PSW and then restart the program. This is a good procedure for testing a proposed
change. Also, you can make a temporary correction and then continue to ensure
that the program runs trouble free.

A procedure for using the STORE STATUS command when debugging is as

follows:

36 z/VM: Diagnosis Guide

Debugging Interactively

» Enter the STORE STATUS command before entering a routine you wish to
debug.

* When processing stops (because an address stop was reached or because of an
error), display the status information that was stored with the STORE STATUS
command.

» Enter STORE STATUS again and display the status information that was stored
with the STORE STATUS command. You now have the status information before
and after the error. This information should help you solve the problem.

STORE STATUS can also be done when taking a stand-alone dump by issuing the
command on a CPU where you will IPL the stand-alone dump utility.

Commands to Collect and Analyze System Information

The following commands can be used to collect and analyze system information
when debugging:

+ MONITOR

» INDICATE

* QUERY SRM

+ LOCATE.

The CP MONITOR command provides a data collection tool that samples and
records a wide range of data. The CP INDICATE command provides a method to
observe the load conditions on the system while it is running. The CP QUERY SRM
command provides observation facilities for analyzing internal activity counters and
parameters.

See the [z/VM: CP Commands and Utilities Reference for more information on the
MONITOR, INDICATE, and QUERY SRM commands.

See the |z/VM: Performance book for more information on system tuning and
performance.

Use the class C or E CP LOCATE command to find the address of CP control
blocks associated with a particular user, a user’s virtual device, or a real system
device.

What to Do If Your Program Loops

If your program seems to be in a loop, you should first verify that it is looping, and
then interrupt its processing and do one of the following:
* Halt it entirely and return to the previous environment
* Restart the program at an address outside of the loop.

An indication of a program loop may be what seems to be an unreasonably long
processing time.

If you are in a long loop, you can use the CP TRACE command with the RUN
option and look at the addresses run to identify the loop.

In a smaller loop, you can verify a loop by checking the PSW frequently. If the last
word repeatedly contains the same series of addresses, it is a good indication that

Chapter 2. Debugging Interactively 37

Debugging Interactively

your program is in a loop. To check the PSW of your virtual machine, you must be
in the CP command environment. You can then use DISPLAY PSW to examine the
PSW by entering:

display psw

and then enter the command BEGIN to restart the program:
begin

If you are checking for a loop, you might enter both commands on the same line
using the logical line end. If the line end is set to a pound sign (#), enter:

display psw#begin

When you have determined that your program is in a loop, you can stop the
program by entering the CMS immediate command HX:

hx

If you want your program to continue at an address past the loop, you can use the
CP command BEGIN to specify the address at which you want to continue. For
example, enter:

begin 20cd0

You could also use the CP command STORE to change the instruction address in
the PSW before entering the BEGIN command. For example, enter:

store psw 0 20cdO#begin

Debugging with CP after a Program Check

If a program check occurs while your program is running, your virtual machine may
stop with a disabled wait state. To force your virtual machine to stop when a
program check occurs, use the TRACE command.

trace prog

All of your program’s registers and storage areas remain exactly as they were when
program interruption occurred. The PSW that was in effect when your program was
interrupted is in the program old PSW. Enter one of the DISPLAY commands to
examine its contents:

display psw prog
display pswg prog

If, after using CP to examine your registers and storage areas, you can recover
from the problem, you must use the STORE command to restore the PSW,
specifying the address of the instruction just before the one indicated by the
program old PSW. For example, if your program was loaded at X'20000' and the
instruction address in your program is X'566' enter:

store psw 0 20566
begin

In this example, setting the first word of the PSW to 0 turns the wait bit off and
clears all other information in the first word, so that processing can resume.

38 z/VM: Diagnosis Guide

Chapter 3. Using Traces to Debug

When CP tracing is active, system events are recorded as trace entries in trace
tables in real storage. The initial number of trace table pages available to a
processor is determined by the TRACE portion of the STORAGE statement in the
system configuration file. The TRACE portion of the STORAGE statement lets you
specify the number of trace table pages for the master processor and a percentage
of that number of pages for all alternate processors. The effect of this initial
specification can be changed by using the SET TRACEFRAMES command; the
values currently in effect can be displayed by using the QUERY TRACEFRAMES
command. Trace entries are created for each processor in a configuration as long
as tracing is enabled.

Locating the CP Trace Table

CP keeps a detailed record in the CP trace table of every major event that takes
place in your real machine. This table is useful, particularly when trying to discover
the events that led to an error in CP.

To find the address where trace tables begin, check the value in PEXTTPNT in the
prefix page. For additional information on the prefix page, see r‘HCPPFXPG: The|
[Prefix Page” on page 58|

Control register 12 contains the address at which the next trace entry will be
placed. That address, minus X'20' or X'40' (depending on the entry length (see
entry formats)) is the address of the last trace entry created.

Note: Ignore bit 31 of control register 12. It is a flag indicating whether tracing is
currently active.

illustrates the concepts that each processor in a configuration has its own

allotment of trace table pages, that PEXTTPNT points to the beginning of the trace
table, and that control register 12 points to the next trace entry.

PEXTTPNT PEXTTPNT
Beginning of / Beginning of /

trace table page trace table page

Next trace|entry

Next trace|entry

CR12
CR12

Trace table pages Trace table pages
for CPU 1 for CPU 2

Figure 2. Trace Table Pages for Each Processor

Trace Entries

Trace table entries can be 32 or 64 bytes. An entry’s length and format are defined
in its first two bytes:

© Copyright IBM Corp. 1991, 2005 39

Using Traces to Debug

» the low-order half of the first byte: 7x, where x is the number of register fields
minus one

« the high-order bit of its second byte: y0, where y is 1 for 64-byte format and 0
for 32-byte format.

Thus the first two bytes of trace entries are:

* 7400 - 32-byte entries in the format further described below

» 7580 - 64-byte entries (this format is shown in Appendix C)

In addition to these first two bytes, trace table entries contain:

» Atime-of-day clock value that indicates when the entry was made

* A constant field (0000)

* A code that defines the event being traced

« A maximum of 40 bytes of information about the specific event traced.

shows the format of a 32—byte trace entry as it would appear in a dump.

Contents of general purpose registers

Real Trace
storage Time-of-day event
address clock code
\ | \ | [|| | | ||
007DC120 74003DC7 6AE40640 00003600 63000000 00C4E2E6 007D0000 00000000 8034CBAO
L L
Length and Constant
format indicator field

Figure 3. Format of a 32-byte Trace Entry

Each trace entry contains information on a specific system event. Consider the
sample trace entry shown in

1 2 3 4 5 6 7

1 | | | | |
00F83F80 74008776 67F53000 00002C00 0000000C 00C9CIC4 00FC0298 00814488 8007BD3A

Figure 4. Sample Trace Entry in a CP Abend Dump

In this 32—byte trace entry at address X'00F83F80', the number over the blocks of
storage refer to the following items:

1. The time-of-day (TOD), bits 16 through 63, was set to X'877667F53000' when
this trace entry was created (at X'02' in the trace entry).

2. The trace event code was X'2C00', a RETURN WITH SAVE AREA (at X'0A' in
the trace entry).

3. The value returned in register 15 was X'0000000C' (at X'0C' in the trace entry).

4. The condition code was 0, and the returning module identifier was ‘lID’ (at X'10'
in the trace entry).

5. The returned SAVBK address in register 13 was X'00FC0298' (at X'14" in the
trace entry).

6. The real address of the calling module from register 14 was X'00814488' (at
X'18' in the trace entry).

40 z/VM: Diagnosis Guide

Using Traces to Debug

7. The real exit address of the called module from register 14 was X'8007BD3A'
(at X'1C" in the trace entry).

In this example, CP stored the contents of the general purpose registers at
X'FC0298' with a return code of 12.

For a complete listing of trace table codes and their field values, see|Appendix C,
['Trace Table Codes,” on page 213||

Limiting the Trace Entries Recorded

Normally, CP tracing is active during system operation. However, new trace entries
are added continually to trace tables and eventually are written over older trace
entries. This process is called wrapping.

On stressed systems, wrapping may occur in well under one second. As a result,
an abend dump that includes the trace table for each processor may convey little or
no information about the problem. z/VM overcomes this limitation by allowing class
A and C users to do the following:

» Limit tracing to certain user IDs or event codes
 Filter out data for certain user IDs or event codes
» Save entries on tape or in system trace files

* Refine captured information.

» Trace and display real 1/0O devices

» Trace and display most code paths in CP

» Extract captured trace data, including captured trace table data from trace buffers
within a CP dump.

For tracing activities, you mainly use eight CP commands:
+ SET CPTRACE

* QUERY CPTRACE

+ TRSOURCE

*+ QUERY TRSOURCE

« TRSAVE

* QUERY TRSAVE

« QUERY TAPES

* QUERY TRFILES.

See |z/VM: CP Commands and Utilities Reference for the format of, and information
about, these commands.

For processing trace data recorded by the TRSOURCE command or for processing
CP trace data, you use one CP utility:

» TRACERED.

See [z/VM: CP Commands and Ulilities Referencd for detailed information about
using the TRACERED uitility.

Designating Entries to Be Captured or Filtered

Although trace tables can be saved on tape or in system trace files by the CP
TRSAVE command, the rate at which trace entries are generated may exceed 1/O
capabilities. In such situations, you can filter out certain entries. The goal is to
capture only the trace information of interest.

Chapter 3. Using Traces to Debug 41

Using Traces to Debug

Use the CP SET CPTRACE command to disable as many trace codes as possible,
while still maintaining the necessary history of system events.

To designate which entries are either captured and written to a trace table or filtered
out and not written to a trace table, specify the following:

1. Trace codes
2. User ID or SYSTEM.

Note: SYSTEM represents the trace entries CP creates while doing work for
the system. This includes all work dispatched on the SYSTEM VMDBK
for serialization.

Capturing or Filtering Data by Trace Code: If you want to capture or filter data
for certain trace codes, use the CP SET CPTRACE command to trace individual
codes or named categories of codes.

Capturing or Filtering Data by User ID or SYSTEM: In addition to designating
trace codes for capturing or filtering, you can further limit the trace entries written to
trace tables by designating other tracing criteria. These additional tracing criteria
include user ID, SYSTEM, or certain groupings of these. Use the CP SET
CPTRACE command with the SPECIFIC option to designate certain user IDs be
traced, each with its own set of tracing criteria. Use the CP SET CPTRACE
command with the NONSPECIFIC option to designate certain user IDs be traced,
all sharing the same tracing criteria.

illustrates the concept that you can request tracing according to separate
tracing criteria for individual user IDs or shared tracing criteria for a group of user
IDs.

Separate tracing criteria
for users 1, 2, and 3

Specific Nonspecific Shared tracing criteria

~—__| for all other users
|7 user1

User 5
User 6

User 4} //V

User 2

| — User3

-

Figure 5. Tracing Events for Specific and Nonspecific Users

For additional information about the SET CPTRACE command, see the |z/VM: CP
|Commands and Utilities Referencéd,.

More Information on Filtering

The following system events are some of the most common entries in a trace table.
If you do not need them for diagnosing problems in a particular circumstance, filter
them out to reduce the number of trace entries generated.

42 z/VM: Diagnosis Guide

Using Traces to Debug

System Event Entry Code

Obtain free storage frame CODE=0600
Return free storage frame CODE=0700
Run user CODE=0A00
Call with save area CODE=2800
Return with save area CODE=2C00
Stack CP execute block CODE=3300
Unstack CP execute block CODE=3310
Exit to the dispatcher CODE=3600

Tracing 1/0, Data Code Paths, and Virtual Machines

The TRSOURCE command lets you trace I/O paths, data code paths, Guest LAN
or VSWITCH paths, and virtual machine guests. You can use TRSAVE to save the
source data on DASD and the TRACERED utility to format the data so that you can
read it interactively. The following are examples of using TRSOURCE for tracking
I/0O, data paths, and virtual machine guests. For an example of using TRSOURCE
with a Guest LAN or VSWITCH problem, see [‘Using TRSOURCE to TRACE 4|
IGuest LAN or Virtual Switch’|in [z/VM: Connectivity|

I/0 Trace Example

The operator gets a system message (COMMAND REJECT) indicating an 1/O error
on the 3800 printer at real device address 411.

To look at the CCWs to this device, enter the following two commands:

trsource id printbug type io dev 411
trsource enable id printbug

Wait for the error to recur. At that time, enter this command:
trsource disable id printbug

You can now enter QUERY TRFILES to make sure that one or more trace files
were created. The user ID that issued the TRSOURCE commands is the owner of
these trace files. If you received message 6084 saying that the oldest trace file was
purged, more trace data was generated than could be contained in two 256-page
files. You may change the size or number of files that are created when you enable
the trace ID. If you choose to specify five 400-page files, enter:

trsave for id printbug size 400 keep 5

See the TRSAVE command in|z/VM: CP Commands and Utilities Reference| for
more information.

Trace Table Example

The problem

Several users are reporting that their user IDs seem to be hung because they

cannot log off. This happens every day between 4:00 and 5:00 in the afternoon
when they want to go home. Their user IDs are USER1, USER2, USERS, and

USER4.

The research
You have taken a restart dump. In further analysis, you find that these user IDs
were hung because a wait flag is being turned on but never turned off for them. The

Chapter 3. Using Traces to Debug 43

Using Traces to Debug

restart dump does not reveal the cause because the trace table had wrapped by
the time the dump was taken. There are no events for these users in the dump.

The solution
Between 4:00 and 5:00 P.M. tomorrow, obtain the events that occur for these users.
You have two 3590 tape drives located at real device addresses 181 and 182.

At 4:00 P.M., enter this command to turn tracing off for the system and for all users.
set cptrace off

Now enter the following commands to turn tracing on for these four users :

set cptrace for userl on
set cptrace for user2 on
set cptrace for user3 on
set cptrace for user4 on
trsave for cp on tape 181 182 rewind

At 5:00 P.M., enter:
trsave off

To start the tracing for the system and for other users again, enter:
set cptrace on

You may now use the TRACERED utility to display the trace data on the tapes.

Data Trace Example 1

When using an application that uses IUCV to transmit data, end users are
complaining that they are receiving incorrect data. There are three possible points
at which the incorrect data may be originating:

1. The sending (SOURCE) virtual machine

2. The CP send/receive mechanism (IlUCV)

3. The receiving (SINK) virtual machine.

Step A

Understand what data is supposed to be sent from the SOURCE virtual machine.

Step B
Find out what data is actually being sent. (If this data does not match what is
supposed to be sent, the SOURCE virtual machine is the origin of these problems.)

At offset X'1B2' in module HCPMOD, register 5 points to the user data; register 6
points to the control block describing the data. The instruction at this location is LR
R1,R5 (X'1815").

Set up a data trace to trace the general registers, the storage pointed to by register
5 for 200 bytes, and the storage pointed to by register 6 for 100 bytes. Enter the
following command:

trsource id send type data loc hcpmod + 1b2 1815 d1 g0:f g5.200 g6.100

Step C

Find out what data is being received by the receiving virtual machine. If the data is
the same as what was being sent, then IUCV is not the origin of the incorrect data.
Otherwise, IUCV is the problem source.

44 z/VM: Diagnosis Guide

Using Traces to Debug

At address X'2B200', data is passed to the SINK virtual machine. The instruction at
this location is SLR R5,R5 (X'1F55'). Register 4 points to the user data. Register 7
contains the pointer to the control block that describes the data. Set up a data trace
to trace the storage pointed to by register 4 for 200 bytes and the storage pointed
to by register 7 for 100 bytes. Enter:

trsource id sink type data loc 2b2000 1f55 d1 g4.200 g7.100

Step D

Collect the data. You are planning to analyze the data from a different user ID
(USERB) than the one issuing the TRSOURCE commands. Therefore, use
TRSAVE to change the user ID that will receive the files when the trace is
completed. Enter the following three commands:

trsave for id send to userb

trsave for id sink to userb
trsource enable id send sink

Wait for the problem to occur, then enter:
trsource disable id send sink

USERB may now use the TRACERED command to process the trace data
recorded by TRSOURCE.

Data Trace Example 2

The following example depicts how multiple TRSOURCE command invocations may
be entered to set up a conditional data link trace.

You have been experiencing system abends and based on preliminary dump
analysis you suspect an overlay is occurring. Information you’ve found so far in the
CP Trace Table at the time of the abend leads you to suspect that the error takes
place during execution of module HCPNOS.

Step A

Decide what information needs to be displayed to more closely pinpoint the error.

Step B

If appropriate, use the selectivity options of TRSOURCE when defining a conditional
data link trace. The example below defines a trace at X'34' into HCPNOS at the
X'58' LOAD instruction.

trsource id trcl type data loc hcpnos + 76 5840C048

Step C

Collect the data. Because you suspect that the error occurs while the dispatched
machine is either 'OPERATOR' or 'MAINT', the next two trace instructions check the
VMDBK for the ID of the machine. If it is OPERATOR, then registers 0 through 15
are displayed. If it is MAINT then 48 bytes of the program header information that is
pointed to by register 12 are displayed.

trsource id trcl if gb+200.8 EQ C'OPERATOR'

trsource id trcl then d1 g0:f

trsource id trcl else if gB+200.8 eq C'MAINT'

trsource id trcl then d1 gc.30

trsource id trcl endif

trsource id trcl endif

trsource enable id trcl

Chapter 3. Using Traces to Debug 45

Using Traces to Debug

As with example 1 TRSAVE can be used to change the user ID that will receive the
files when the trace is completed. After the data is collected the trace can be
disabled.

Saving Trace Data on Tape or DASD

CP Trace table data may be saved in system trace files (TRFILEs) or on tape. Data
from traces defined by TRSOURCE may be saved only in system trace files.

If the system abends while trace activity is active, the trace information that has not
been recorded on DASD or tape at the time of the abend can be extracted from the
CP dump by the TRSAVE subcommand of the VM Dump Tool.

Factors That Affect Saving Trace Data

Number of Trace Table Pages: CP’s ability to save trace table pages before they
wrap depends on the number of trace table pages available and the speed at which
the entries are generated.

The number of trace table pages available to each processor is determined by the:
* Real storage size of the system (that is, by default)

* STORAGE statement in the system configuration file

* SET TRACEFRAMES command.

For more information, see the STORAGE statement description in the
Planning and Administration|book and the SET TRACEFRAMES description in the
z/VM: CP Commands and Utilities Reference

Contention with Other Users or Functions: Trace tables are saved on tape at a
lower rate of speed if other users or functions are on the same control unit as the
tape drive you selected to save the trace tables.

Rate of Data Collection: If the rate of data collected exceeds the I/O rate for
saving trace data on tape or DASD then some trace data may not be saved.

The DEFERIO operand of the CP TRSAVE command can be used to delay the 1/0
until after the trace has been turned off. With this option real storage frames are
taken from the dynamic paging area and set aside to hold an in-storage wrap of the
collected trace data. The oldest trace data is discarded when the wrap occurs (all
frames have been filled), so enough real storage frames need to be set aside to
hold the oldest trace data that you need. Filtering the amount of data collected can
decrease the amount of real storage frames needed.

Trace Wrapping: When determining the amount of data that needs to be saved
before wrapping, (the TRSAVE command’s FRAMES parameter for in-storage wrap,
SIZE, or both and KEEP parameter of wrapping of trace files on DASD), you need
to consider the size of the trace records collected and the frequency of the trace
events.

Options Selected on the TRSAVE Command: If you are tracing a problem that
takes a long time to recreate, certain options on the TRSAVE command allow
continued recording of the trace tables or data from traces defined by the
TRSOURCE command, even as the tape is filled.

Selecting the use of two tape drives on the TRSAVE command is recommended to
minimize loss of data. If two tape drives are specified, CP automatically switches to

46 z/VM: Diagnosis Guide

Using Traces to Debug

the second tape drive when the tape on the first one becomes full. The operator
can then mount another tape on the first drive so that it too becomes available for
use should the tape on the second drive also become full. With this setup,
automatic switching back and forth between two tape drives continues until the
trace is complete.

In addition to specifying two tape drives, choosing either the RUN (rewind and
unload) or the REWIND option further defines how the process of saving trace
entries to tape proceeds. If you select RUN (the default), new tapes can be
mounted and the drive made ready to accept additional trace information to provide
an indefinite history. If you select REWIND, recording can continue after the tape is
rewound. If writing continues to the drive, the new information will be written over
existing information.

Viewing the Trace Tables

Use the TRACERED utility to format the trace entries saved onto tape or system
trace files, or written to CMS files by the VM Dump Tool TRSAVE subcommand,
and then view the information in a print file or CMS file. Use the TRACERED utility
to select options and format the output. You can send the output to a CMS file for
viewing on your virtual machine or for printing. See the [z/VM: CP Commands and
[Utilities Reference book for more information on the TRACERED utility.

Factors affecting TRACE Table Pages

CMS Storage: You may encounter disk storage constraints if you select a CMS
file for the output from the TRACERED utility. The more trace entries that meet the
selection criteria, the larger are the storage requirements. One way to alleviate
storage constraints is to designate more stringent selection criteria.

The table that follows shows the total number of trace entries TRACERED can
process onto a single cylinder or its equivalent in number of blocks on the specified

DASD type:

Table 4. Approximate Number of Trace Entries per Cylinder or per 1000 Blocks

CMS Minidisk Device Type Formatted Unformatted
3350 1666 5000
3375 1066 3200
3380 2083 6250
3390 2083 6250
FBA (1000/512-byte blocks) 1873 5620

You should also beware of creating CMS files too large for the CMS editor to
accommodate. Should this occur and you still want to view the entries created,
either use the COPYFILE command to break the file into manageable pieces or
increase the virtual machine storage size. The alternative is to erase the CMS file
and rerun the TRACERED utility with more stringent selection criteria.

Chapter 3. Using Traces to Debug 47

48 z/VM: Diagnosis Guide

Chapter 4. Creating a Dump

A dump is a record of the contents of your machine’s storage at a given moment. It
can appear either online or printed on paper. A dump can pinpoint the moment
when malfunctions begin.

A dump can originate in a z/VM system within:
« CP

* A virtual machine in which CMS, or another z/VM component, or a guest
operating system is running

¢ A communication controller.

A dump, depending upon the type you request and where it comes from, can
include data such as:

» Virtual storage, which is a byte-by-byte record of the contents of a virtual
machine’s storage in hexadecimal notation. The dump provides an EBCDIC
translation of this data.

* Real storage, which is a byte-by-byte record of the contents of your z/VM
system’s real storage and includes control blocks

» Access, general purpose, and floating-point registers
» Control registers

* The time-of-day clock

* The processor timer

* The program status words (PSWs).

Types of Dumps

There are several types of dumps you can request, depending on the information
that you want.

* A CP dump. This is a dump of the storage directly owned by CP. It is generated
by CP during a hard abend and results in system termination and possibly a
restart.

* A snapdump. This is a dump of the storage directly owned by CP and is very
similar to a hard abend dump but does not result in system termination.

* A CP soft abend dump. A soft abend dump is a dump of a small amount of the
storage directly owned by CP. It is created when CP encounters a problem where
system integrity is not jeopardized by the error, or when CP can isolate an error
to a virtual machine. It does not result in system termination.

» A stand-alone dump. Sometimes, a problem can be so severe that your system
cannot even produce a CP dump on its own. For this reason, every z/VM system
is equipped with a special program that will produce a dump of real storage,
regardless of how severe the problem is. It is called a stand-alone dump
because the program that produces it stands alone or independent of the rest of
the system programming. Because it is independent of the system programming,
any problems there will not prevent the dump from being created.

* A dump limited to any single virtual machine (VMDUMP) running in your z/VM
system. For example, you can request a dump of a virtual machine containing
CMS, RSCS, or any guest operating system that resides in a virtual machine.

* A dump of a communication controller’s storage. A communication controller
is a device that manages and controls the operation of a computer network,
including the routing of data therein. Such a device contains what is called a

© Copyright IBM Corp. 1991, 2005 49

Creating a Dump

communication controller program, a dump of which can be useful when dealing
with computer network problems. To dump information from a communication
controller, see the publication associated with the type of controller installed at
your location. If you use the CP CCLOAD utility to produce a communication
controller dump, you can use the CP CCDUMP utility to format the dump file. For
more information, see the [z/VM: CP Commands and Utilities Reference| book.

A dump is useful when dealing with a problem in your z/VM system. A dump is a
picture of the system’s (or virtual machine’s) storage. The problem is likely to be
somewhere in the picture. Dumps are also especially helpful in dealing with wait
states, infinite loops, and abends.

There may be times when a dump does not provide all the information you need. In
those cases, especially if the problem is a user hang, a trace table may be helpful.
See [Chapter 3, “Using Traces to Debug,” on page 39 for more information.

Setting Up the System for a Dump

You must route your dump to the appropriate destination and allow sufficient space
for the dump.

1.

50 z/VM: Diagnosis Guide

Specify the appropriate dump medium and routing.

When CP creates a dump, the dump is sent to the virtual machine defined in
the SYSTEM_USERIDS statement in the system configuration file. You should
use the DUMPLOAD utility to load the dump from the reader spool file into a
CMS dump file.

If you wish, you can specify in advance the destinations for the dump. Use the
CP SET DUMP command to indicate where you prefer to send a dump
whenever one is generated. You can specify up to eight DASD devices, or one
tape. The |[z/VM: CP Commands and Ulilities Reference describes the SET
DUMP command in detail.

Provide sulfficient spooling space to accommodate the dump.

A system dump uses a significant amount of spooling space. The amount of
space required depends on the amount of real storage on the processor in the
real machine and the type of DASD allocated for spooling. For example, a dump
from a 16 MB machine fills approximately 27 cylinders of a 3380 device. The
[z/VM: CP Planning and Administration|book contains a table of suggested dump
space allowances for various storage sizes and DASD types.

Provide sufficient minidisk space to receive the dump.

To use the available dump viewing tools, you must process the dump into a
CMS file. This requires the receiver to have sufficient minidisk space. The
precise amount of space needed depends upon:

* The amount of storage dumped

* The type of DASD

* The block size specified when the minidisk was formatted.

Guidelines for storage requirements are given in the |zVM: VM Dump Too| book.
Decide which debugging tool you want to use.

If you produce a dump of the contents of a virtual machine, consider what that
machine contains. If it contains a guest operating system (such as MVS or
VSE), then consider using the dump facility provided by that particular system.
The quality and quantity of the data in the dump will probably be higher than
that obtained using z/VM dump commands. Review the manuals pertaining to
the operating system in question.

Creating a Dump

If a virtual machine contains a z/VM product or component that runs in ESA/390
Architecture mode (such as CMS or GCS), you can use the Dump Viewing
Facility to view the dump.

If the virtual machine contains CP or other z/Architecture mode operating
system, you can only use the VM Dump Tool to view the dumps in
z/Architecture format.

Dumping Real or Virtual Machine Data

When CP abends, it automatically tries to create a dump. There may be other
times, however, when you need to produce a dump. This often depends on the
virtual machine running on the system.

For example, when a program you run under CMS abnormally ends, you do not
automatically receive a program dump. If, after attempting to use CMS and CP to
debug interactively, you still have not discovered the problem, you may want to
obtain a dump.

You might also want to obtain a dump if you find that you are displaying large
amounts of information, which is not practical on a terminal.

Commands That Dump Real or Virtual Machine Data
Commands that dump real or virtual machine data are; DUMP, VMDUMP, and

SNAPDUMP. See the |z/VM: CP Commands and Ultilities Reference|for more
information on these commands.

The DUMP Command

See the description of the DUMP command in the |z/VM: CP Commands and|
[Utilities Reference book for a description of the real and virtual machine
components that can be sent to a virtual printer.

For example, to dump the virtual storage space for a specified address range with
an EBCDIC translation of the dump enter:

dump t20000-20810

See [Chapter 5, “Debugging CP,” on page 55|for more information on using dumps
to debug.

The SNAPDUMP Command

The SNAPDUMP command can be used to generate a full system dump identical to
a CP hard abend dump without terminating the system. This type of dump is
especially beneficial when debugging a "hung user" type of problem or when it is
impossible to shut the system down for dump generation and analysis. The
snapdump destination and dump content can be altered by the CP SET DUMP
command. The SET ABEND command can be used to redefine soft abends as
snapdumps. The CP DUMPLOAD utility can be used for processing dumps and the
VM Dump Tool can be used for viewing dumps.

The VMDUMP Command

The VMDUMP command dumps virtual storage to the virtual card reader of a
specified user ID. You should use the DUMPLOAD utility to load the dump from the
reader spool file into a CMS dump file and then use the Dump Viewing Facility or
VM Dump Tool to view or print it. For details, see the [z/VM: Dump Viewing Facility|
and the [z/VM: VM Dump Tool books. For a description of the format and contents of

Chapter 4. Creating a Dump 51

Creating a Dump

the VMDUMP records, see ['VMDUMP Records: Format and Content” on page 65
See [Chapter 5, “Debugging CP,” on page 55| for more information on using dumps
to debug.

To create a dump of a program you are running under CMS, you can enter the
command:

vmdump 0-end format cms dcss

This example dumps all the discontiguous saved segments (DCSS) outside of the
virtual machine’s storage.

To dump a portion of a discontiguous saved segment, use an inline range value
without specifying the DCSS option. Enter:

vmdump 100-25F0 format cms

CP dumps the contents of virtual storage from location X'100' to X"25F0', including
guest storage and all the discontiguous saved segments within the specified
address ranges.

Stand-alone Dump Utility

z/VVM includes a stand-alone dump utility that you can tailor according to your
installation’s configuration using CMS. After you generate z/VM, you should create
the stand-alone dump utility program and place it on tape or a DASD for emergency
use. If, after a system failure, CP cannot create an abend dump, you can use the
stand-alone dump utility to dump all of storage.

To use the stand-alone dump program to dump real storage, your must have
access to IPL the real machine. You can IPL the stand-alone dump program from
tape or a DASD and direct the output to a tape. The stand-alone dump program is
not supported to IPL from FBA type DASD. You may need to reserve several tapes
to hold all the information. Basic error recovery is available for DASD and tape
devices used as IPL or output devices.

Typically, an installation can have several stand-alone dump programs generated
and ready to run. It would be useful to have the following configurations available
for the stand-alone dump utility:

» IPL from tape with output directed to tapes
« IPL from DASD with output directed to tapes

These configurations let you take a stand-alone dump with any of the supported
possible environments.

See the [z/VM: CP Planning and Administratior] book for information about how to
create the stand-alone dump utility.

The stand alone dump program communicates with you using PSW wait codes.
When the stand-alone dump program completes processing or ends because of an
error, it will enter a disabled wait state and load a wait state code into the PSW.
This PSW will appear on the operator’s console, at the end of the wait state
message you receive. In the example shown below, the wait state code in the PSW
is 8200:

CPU STOPPED; DISABLED WAIT PSW 000A0000 00008200

52 z/VM: Diagnosis Guide

Creating a Dump

For a description of what the disabled wait state code means, look up the CP
message that has the same number as the wait state code. For the above example,
wait state code 8200 indicates that the stand-alone dump has successfully
completed. See the [z/VM: CP Messages and Coded book for a description of CP
messages.

See the |[z/VM: System Operatior] book for information about how to run the
stand-alone dump utility.

Chapter 4. Creating a Dump 53

54 z/VM: Diagnosis Guide

Chapter 5. Debugging CP

Debugging CP in a Virtual Machine

Many CP problems can be isolated by running in a virtual machine. In most
instances, the virtual machine system is an exact replica of the system running on
the real machine. To set up a CP system in a virtual machine, use the same
procedure that generates a CP system on a real machine. However, remember that
the entire procedure of running service programs is now done on a virtual machine.
Also, the virtual machine must be described in the real directory. See the
[Running Guest Operating Systemd book for directions on how to set up the virtual
machine.

Abend Dumps

When an abnormal end occurs, CP attempts to dump the contents of storage.
Dumps can be directed to DASD or tape.

A soft abend dump is taken when a problem program cannot continue, when
system integrity is not jeopardized by the error, or when CP can isolate an error to
a virtual machine. If the operating system for your virtual machine cannot continue,
it ends and, in some cases, tries to take a dump. A virtual machine dump is sent to
a system data file.

A snapdump abend dump is taken when a problem program cannot continue, when
system integrity is not jeopardized by the error, or when CP can isolate an error to
a virtual machine. Although the information contained in the snapdump is identical
to that contained in a hard abend dump, the system is not terminated.

A hard abend dump is produced when the CP system cannot continue.

When you receive an abend, if the dump is set to go to DASD SPOOL space
(specified by the CP SET DUMP command), the dump is sent to the reader of the
user ID designated as the dump receiver. This user ID is specified by the DUMP
operand of the SYSTEM_USERIDS statement in the system configuration file. By
entering the QUERY DUMP command, you can determine where the dump is being
directed. After the dump is loaded onto DASD, use the DUMPLOAD utility to create
a CMS file and then use the VM Dump Tool to process it or view it interactively.

If the dump is directed to one or more tapes, use the DUMPLOAD utility to create a
CMS file and then use the VM Dump Tool to view it interactively.

Use the CP SET DUMP command to designate the output device to receive system
abend dumps. See the [z/VM: CP Commands and Utilities Referencd for the format
of the SET DUMP command.

Reading CP Abend Dumps

When CP can no longer continue and abnormally ends, you must first determine
the condition that caused the abend, and then find the cause of that condition. You
should know the structure and function of CP.

Two types of dump formats occur when CP abnormally ends, depending upon
where the dump is directed to in the CP SET DUMP command.

© Copyright IBM Corp. 1991, 2005 55

Debugging CP

If the dump is directed to DASD, and if you want to use the VM Dump Tool to
analyze it, you will need to use the DUMPLOAD utility to load the dump into a CMS
file. You can then use the VM Dump Tool VMDUMPTL command to view the dump
interactively. This chapter contains several references to the VMDUMPTL
command. For detailed information about this command, see the |z/VM: VM Dump|
book.

Storage is displayed in hexadecimal notation, four words to the line, with EBCDIC
translation at the right. The hexadecimal address of the first byte printed on each
line is indicated at the left.

For information about obtaining detailed descriptions of CP data areas and control
blocks, see|‘Looking at Key Control Blocks” on page 57

Using the Assert Facility

The Assert Facility can help detect some problems earlier in execution. This facility
allows some CP modules to verify that certain conditions exist before continuing
execution. If the conditions are not met, an abend or stop occurs, depending on
how the facility is activated.

To turn the Assert Facility on, enter:

CP SET CPCHECKing ON ABEND
or
CP SET CPCHECKing ON VMSTOP

For more information about setting conditions, see the |z/VM: CP Commands and|
[Utilities Reference,

Reading the Dump with the VM Dump Tool

The VM Dump Tool gives you the ability to interactively view CP, stand-alone, soft
abend, and virtual machine dumps. It runs under CMS.

To use the VM Dump Tool for diagnosing CP problems, you need the following:
* A copy of the dump you want to examine.

* A copy of the DUMPLOAD utility which you use to load the dump into a CMS file
in order for the resulting dump to be usable by the VM Dump Tool.

When you receive an abend, if the dump is set to go to DASD SPOOL space
(specified by the CP SET DUMP command), the dump is sent to the reader of the
user ID designated as the dump receiver. This user ID is specified by the DUMP
operand of the SYSTEM_USERIDS statement in the system configuration file. For
information on the CP SET DUMP command, see the|z/VM: CP Commands and
[Utilities Reference, For information on setting up the system abend dump
environment, see the [z/VM: System Operatior] book.

To use the dump with the VM Dump Tool, you must:
1. Log onto the dump receiver’s user ID.

2. Load the dump into a CMS file, using the DUMPLOAD utility. See the (z/VM: CH
[Commands and Utilities Referencd for additional information on the
DUMPLOAD utility.

The VM Dump Tool shortens the time you need to gather information about a CP
problem. Some of the tasks that the VM Dump Tool performs are:

56 z/VM: Diagnosis Guide

Debugging CP

» Displaying symptom record information. By using the SYMPTOM subcommand of
VMDUMPTL, you can easily check the symptom record issued with the abend
dump.

» Viewing the contents of all registers and all PSW values at the time of the dump.
The REGS subcommand of VMDUMPTL enables you to view the contents of
general purpose, control, access, and floating-point registers, and all the PSW
values at the time of the dump.

» Formatting trace entries. By using the TRACE subcommand of VMDUMPTL, you
can format the trace entry so that each field of a trace entry is displayed with its
description.

» Locating the addresses of certain modules or entry points in a CP dump, or

identifying which modules or entry points reside at a specific address in a CP
dump. Use the MAP subcommand of VMDUMPTL to do this.

» Finding real and virtual device information. The RDEVBK and VDEVBK
subcommands of VMDUMPTL enable you to locate RDEVs and VDEVs by going
through the radix tree. These subcommands display the data on your screen.

* Finding information about any control block. Use the BLOCK and CHAIN
subcommands of VMDUMPTL to do this.

Printing Dump Information from the VM Dump Tool

After you have processed the dump so that the VM Dump Tool can use it, you can
display information from the dump.

After you have completed your VM Dump Tool session, use the FILE or SAVE
subcommands to save the DUMPLOG file to disk. You can use the CMS PRINT
command to print this DUMPLOG file. For more information on PRINT, see the
lz/VM: CMS Commands and Ulilities Reference)

Looking at Key Control Blocks

z/VM CP uses control blocks to hold information about many aspects of the entire
system. System processing relies on this information so that if incorrect data is
placed in these control blocks, errors occur.

When errors occur, control blocks often provide the best information about the
causes. By examining the fields within the control blocks and the available source
listings, you can obtain valuable diagnostic information for problems with z/VM.

Descriptions of some major control blocks appear in the following sections. For
each control block, a brief explanation of its purpose is given, followed by pointers
or other methods for locating the control block, and then by specific fields that you
may find useful in gathering data. Although these control blocks are especially
helpful in diagnosing problems, they are not the only ones you should use.

You can obtain a detailed description of CP data areas and control blocks in several
ways:
* Use the VM Dump Tool BLOCK subcommand.

The BLOCK subcommand of the VM Dump Tool can be used to format CP
control blocks for displaying. See the |z/VM: VM Dump Tool book for information
about the BLOCK subcommand.

* Use the z/VM on-line control block data base.

You may also refer to the following URL for a description of the control blocks:
www.ibm.com/eserver/zseries/zvm/library/

Chapter 5. Debugging CP 57

Debugging CP

HCPPFXPG: The Prefix Page

The prefix page is actually two 4K pages for each processor running in z/VM. Each
prefix page contains both hardware and software information for its processor. At
system generation, HCPLOD defines the IPL processor’s prefix page location. Or, if
an alternate processor is either brought online during IPL processing or varied
online after the IPL is complete, the prefix page is acquired dynamically and its
location is defined by HCPMPS.

If you receive an abend dump, you can find the address of the prefix page by using
the CPUID, CREGS, or REGS subcommands of VMDUMPTL.

HCPPFXPG contains information you will find helpful in performing diagnosis. It
contains the following:

e PSW information.

The system PSWs for the processor include PGM, MCH, 1/0, RESTART, SVC,
and EXT.

* Linkage save areas:
These include the following:

PFXTMPSV A copy of the registers and the work areas when one module
calls another.

PFXBALSV The BALR linkage save area.
PFXWRKSV The special work save area.
PFXFRESV The HCPFRE save area.
PFXPTRSV The page translation save area.
PFXLNKSV The call return linkage save area.

PFXIOSID The subchannel number of the last /O device from which an
interrupt was received, the first halfword always contains 0001.

PFXINPRM The address of the RDEV of the last 1/0 device from which an
interrupt was received.

PFXRNUSR The address of the last run VMDBK.

PFXNXTPF If multiple processors are defined, a pointer to the next prefix
area.

PFXTTPNT A pointer to the beginning of the trace table associated with this
prefix page.

PFXSYSVM The address of the system VMDBK that is the starting point of
the global cyclic list.

PFXSYS The address of the system common area (SYSCM).

HCPSYSCM: The System Common Area

The system common area, SYSCM, contains pointers, variables, counters, and
constants for the entire system. It is created at system generation as part of
HCPSYS. SYSCM is located by the pointer PFXSYS from any prefix page.
Diagnosis information found in HCPSYSCM includes:

SYSPRFIX The prefix area for the IPLed processor

SYSTOD The first half of the time-of-day (TOD) clock at IPL time

58 z/VM: Diagnosis Guide

Debugging CP

SYSRDEV The address of the first RDEV block in the radix tree
SYSTORS Real machine storage size up to 2 GB
SYSGTORS Real machine storage size including storage above 2 GB

HCPVMDBK: The Virtual Machine Descriptor Block

The HCPVMDBK, or VMDBK, is a control block that exists for each virtual machine
that is logged on. Each descriptor block contains information about its virtual
machine. It is created when a user does any of the following:

* Logs onto z/VM

» Defines an additional virtual processor

* Enters a SIE (Start Interpretive-Execution) instruction.

Each user has one VMDBK per virtual processor and one additional VMDBK for
each virtual processor from which the SIE instruction was entered.

Locating Descriptor Blocks from a Dump

You can locate VMDBKSs in several ways. To display a list of all the VMDBKSs in a
dump or to display a summary of VMDBKSs for a specific user, use the VMDSCAN,
VMDBK, or VMDBKS subcommands of the VM Dump Tool VMDUMPTL command.
For a complete description of these subcommands, see the |z/VM: VM Dump Tool
book.

The following fields in other control blocks may be helpful to you when examining
the VMDBKs:

VDEVUSER of HCPVDEV A pointer to a user's VMDBK from a virtual device
accessed by that user.

RDEVUSER of HCPRDEV A pointer to a user's VMDBK from the real device
owned by that user.

PFXSYSVM of HCPPFXPG A pointer to the system VMDBK from the prefix
page.

You can also locate VMDBKSs by chains called the global and local cyclic lists. A
global cyclic list is a chain of all origin VMDBKSs for users logged on. The
VMDCYCLE field in the system VMDBK control block points to the first VMDBK in
the list of logged-on users. Then the VMDCYCLE field of each users VMDBK
points to the next VMDBK in the global cyclic list, and on down the chain until the
last VMDBK. The last VMDBK does not point back to the system VMDBK control
block, but to the first VMDBK in the list, the same one to which the system VMDBK
points.

To point to the primary VMDBK for a specific user in a dump, use the VMDBK
subcommand of VMDUMTPL. Enter:

vmdbk userid

A local cyclic list is a chain of all VMDBKSs with the anchor at a VMDBK in the
global cyclic list. The VMDLCYCL field points to the next VMDBK on a local cyclic
list. The last VMDBK on a local cyclic list points back to the origin VMDBK-the
VMDBK on the global cyclic list.

To display a list of all the VMDBKSs in a dump, use the VMDBK subcommand of
VMDUMPTL. Enter:

vmdbks

Chapter 5. Debugging CP 59

Debugging CP

The following fields are generally useful in gathering diagnostic information about a
VMDBK:

VMDSTATE The scheduler and dispatcher state of the user. It tells you whether
this user is ready to be dispatched or is idle.

VMDSLIST A description of the scheduling list of this user. This byte tells you
whether this user is currently in the dispatch list, eligible list,
dormant list, or not in any of the lists.

VMDDLCTL A description of the status of the user in the dispatch list. This byte
gives information about the time-slice of the user on the dispatch
list and whether the user should be dropped or reordered.

VMDIOACT The number of I/0 operations outstanding for this user at the time
the dump was produced.

VMDCFCTL A byte describing the status of the console function for this user at
the time the dump was produced.

VMDCYCLE A pointer to the next VMDBK of the global cyclic list of logged-on
users.

VMDLCYCL A pointer to the next user-defined or system-generated VMDBK for
the user on the local cyclic list.

VMDCHRDN The anchor for the radix tree to VDEVs by device number.
VMDCHRSN The anchor for the radix tree to VDEVs by subchannel number.

HCPRDEYV: The Real Device Control Block

HCPRDEV, or RDEV, is a control block that describes a device. CP uses these
blocks to manage real and logical devices. There is a real device block for each
real device in the system. An RDEV is also created to represent each logical device
and is deleted when the logical device is no longer needed.

There are several ways to display the RDEV for a real device when reading a
dump:
* Use the VMDUMPTL command of the VM Dump Tool.
— Use the BLOCK subcommand to format and display RDEV blocks within a
dump.

— Use the RDEVBK subcommand to display summary information about real 1/0
control blocks. This subcommand uses a radix tree, which is described in
[‘Using a Radix Tree Structure to Locate RDEVS.”|

* Follow one of the radix tree procedures described in the following text.

Using a Radix Tree Structure to Locate RDEVs

RDEVs for real and logical devices are stored in a radix tree structure. You can use
information about the radix tree structure to locate RDEVs for both real and logical
devices. The procedures for locating RDEVs for real and logical devices are nearly
identical. In the examples that follow, |Figure 6 on page 61|, assume you are trying to
locate the RDEV for real device 0191.

60 z/VM: Diagnosis Guide

Debugging CP

SYSRIOIX

OxxX PRI —J | —J ’ ‘J ‘ _J ‘

01xx 0191

RDEVO191

019x

Figure 6. Using a Radix Tree to Locate an RDEV Block

Example 1: Use the VMDUMPTL command of the VM Dump Tool. When you are
using VMDUMPTL to view a dump, enter:

rdevbk 191

The information you receive will point to the address of the RDEV of real device
0191.

Example 2: Use the device number in the process outlined here. The instructions
below tell how to locate an RDEV for a real device. The differences in the process
for locating the RDEV for a logical device are pointed out.

Note: On a running system, you can use the LOCATE RDEV command to find the
addresses of a real device block and its associated control blocks.

1. Look in HCPPFXPG, the prefix page, to find PFXSYS. PFXSYS points to
HCPSYSCM, the system common area.

2. Find the address of the anchor, SYSRIOIX, for the radix tree. Assume you are
using a chaining procedure.

3. Look 0 fullwords past that anchor (HCPRIOIX) address because the first digit of
the device number is 0.

The address at 0 fullwords past the anchor is the next (second) address you
use.

4. Look 1 fullword past that second address because the second digit of the
device number is 1.

The address at 1 fullword past the second address is the next (third) address
you use.

5. Repeat this procedure for the remaining two digits, 9 and 1, for the device. The
last address points to the address for the RDEV of real device 0191.

To find the logical RDEV for a logical device, use the procedure outlined above,
with the following exceptions:

* Look for SYSDVFLX (rather than SYSDVFRX) in HCPSYSCM.
* SYSDVFLX points to HCPLSOLX.

Chapter 5. Debugging CP 61

Debugging CP

* HCPLSOLX points directly to the first table on the radix tree (rather than to
another field that in turn points to the first table on the tree).

Note: On a running system, you can use the LOCATE LDEV command to find the
addresses of a system logical device block and its associated control blocks.

Control block fields of diagnostic value in the RDEV are as follows:

RDEVAIOR
RDEVAFLG

RDEVDFLG
RDEVRFLG
RDEVSTAT
RDEVVDEV

RDEVMDSK

RDEVUSER

A pointer to the active IORBK for this device.

The control flag for the device allocated at the address of this
RDEV. It describes the use of the RDEV—for instance system use,
CP volume, and other usages.

The device-dependent status flag.
The device error recovery control flag.
The device-operation control flag.

The address of the VDEYV, if one is present, associated with this
RDEV. RDEVVDEYV contains a VDEV address only if the virtual
device is dedicated. When it does not contain a VDEV address, it
contains zeros. If two or more virtual devices are linked to this
RDEYV, the address of the pointer to the VDEV addresses resides in
RDEVMDSK.

The address of the MDISK block chain. The chain may consist of
one or more MDISK blocks. Each block points to a chain of one or
more VDEVs linked to that minidisk for a virtual machine. When
RDEVMDSK does not contain the address of the MDISK block
chain, it contains zeros.

The address of the owning VMDBK for this device.

HCPIORBK: The I/0 Request and Response Block

CP creates an IORBK whenever it needs to perform an 1/O operation. When the
operation completes, the IORBK is deleted.

Some key areas of the IORBK are as follows:

IORSCHED
IORFCTL
IORQSTAT

IORETCOD
IORUSER
IORCPA
IORIRA
IORFPNT
IORBPNT
IORRDEV

62 z/VM: Diagnosis Guide

The scheduling and control flags for the IORBK.
A description of the subchannel function of the IORBK.

A description of the status of the IORBK—uwaiting, active, or in
dispatcher control.

The return code of the I/O operation after 1/0 is completed.

The address of the VMDBK using the IORBK.

The address of the channel program (CCWs).

The address of second level interrupt handler (SLIH) routine.
The address of the next queued IORBK.

The address of the previously queued IORBK.

The address of the RDEV associated with this IORBK operation.

Debugging CP

HCPVDEYV: The Virtual Device Block

A VDEV describes the status of a real or virtual 1/0 device that can be accessed by
a virtual machine. A VDEV defines the device to the virtual machine, whereas an
RDEV defines the device to the system.

A VDEV remains active while the virtual machine is either running or disconnected.
It is deleted only when the virtual machine is logged off or the virtual device is
detached. VDEVs are created and deleted by HCPVDB.

If z/VM is running, users with class C or E privileges can find the address of a
VDEV by using the CP LOCATE command. For example, to find the VDEV for
USER1’s 191 disk, you enter:

Tocate userl 191

The VM Dump Tool also offers ways to locate a user's VDEV easily. For further
information on finding virtual device blocks, see the VDEVBK subcommand of
VMDUMPTL in the |z/VM: VM Dump Tool book.

To locate VDEVs from a dump, use the following pointers. Because the VMDBK has
a pointer to the radix tree, the information in[‘Using a Radix Tree Structure tq
lLocate RDEVs” on page 60 may also be helpful.

RDEVVDEV The address of the VDEYV, if one is present, associated with this
RDEV. RDEVVDEYV contains a VDEV address only if the virtual
device is dedicated. When it does not contain a VDEV address, it
contains zeros. If two or more virtual devices are linked to this
RDEYV, the address of the pointer to the VDEV addresses resides in
RDEVMDSK.

RDEVMDSK The address of the MDISK block chain. The chain may consist of
one more MDISK blocks. Each block points to a chain of one or
more VDEVs linked to that minidisk for a virtual machine. When
RDEVMDSK does not contain the address of the MDISK block
chain, it contains zeros.

IORVDEV A pointer from the IORBK to the VDEV for that I/O operation.

Diagnostic information found in the VDEV includes:
VDEVUSER The address of the VMDBK that owns this VDEV.
VDEVRDEV The address of the RDEV associated with this VDEV.

HCPCPEBK: The CP Execution Block

A CPEBK represents one unit of asynchronous work. The CPEBK format is identical
to either the SAVBK or the SVGBK.

HCPSAVBK and HCPSVGBK: The Save Area Block

A SAVBK is a save area, as is a SVGBK. Both blocks are used in CP, but their
structures and sizes are different. Most save areas are dynamic, although some are
static and reside in other blocks, such as the Prefix Page and the SSABK. The
formats of the save areas and the CPEBK are identical.

When a CPEBK, SAVBK, or SVGBK is used, it contains the following:
» A caller’s registers 0 through 15

* The use status of the block

 Indicators of the size and format of the block.

Chapter 5. Debugging CP 63

Debugging CP

* Work areas.

A save area may hold the general registers in one of three formats:
* Short (32-bit)

* Long (64-bit) contiguous

* Long (64-bit) discontiguous.

The short format is used for calls between modules that use only the low-order 32
bits of the general registers. The long contiguous format is used for calls between
modules that use the full 64 bits of the general registers. The long discontiguous
format is used for calls from modules that use the full 64 bits of the general
registers to those that use only the low-order 32 bits.

Because of these different register saving conventions, the layout of the save area
is different in these three cases. The short register and long discontiguous register
layouts are identical, except that the latter defines an additional area to hold the
high-order halves of the general registers. This area is reserved in the short register
layout. The SAVBK defines these formats of the save area. The SVGBK defines the
format of the long contiguous save area.

You can use the VMDUMPTL command of the VM Dump Tool to help you debug
save areas from a dump. The CPEBK subcommand formats the save areas. To
locate the save areas and format them, use the FINDCPE subcommand. For more
information on finding save areas, refer to the|z/VM: VM Dump Too| book.

The following fields are helpful when you are checking CPEBKs or SAVBKSs:

CPEXFPNT/CPEXBPNT, SAVEFPNT/SAVEBPNT, SVGFPNT/SVGBPNT:
The forward and backward pointers for threaded
lists.

CPEXSCHC, SAVESCHC, SVGSCHC:
The stacking control field specifies what type of
function the block performs.

CPEXCALC, SAVECALC, SVGCALC:
The dispatching control field specifies the status of
the block.

CPEXFORM, SAVEFORM, SVGFORM:
The format field specifies the size and format of the
block.

CPEXREGS, SAVEREGS/SAVEHIRG, SVGREGS:
A caller's general registers.

CPEXR1,1 SAVER11, SVGR11LO:
The VMDBK address of the user for whom the
block is scheduled.

CPEXR13, SAVER13, SVGR13LO:
Generally, the previous (that is, the caller’s) save
area.

HCPFRMTE: The Frame Table Entry

FRMTE manages frames of real storage in z/VM. It keeps track of how each frame
is currently being used and what frames of storage are currently available.

64 z/VM: Diagnosis Guide

Debugging CP

The frame table is allocated dynamically at IPL time. The frame table is never
deleted during processing. The start of the frame table is located by PFXFTBL in
any prefix page. For further information on finding frame table entries, see the
FRAME subcommand of VMDUMPTL in the [z/VM: VM Dump Tool book.

Important HCPFRMTE fields include the following:
FRMFPNT A forward pointer to the next frame table entry for a chained frame.

FRMBPNT A backward pointer to the previous frame table entry for a chained
frame.

FRMCSWRD A fullword that has the following byte fields:

FRMCSBO A description of how the frame is currently being
used. For example, CP is using the frame of
storage for a trace table or user page.

FRMCSB1 A description of the static state of the real storage
frame.

FRMCSB2 A description of the dynamic state of the real
storage frame.

FRMCSB3 A field used in serializing the frame state changes.

VMDUMP Records: Format and Content

When a user enters the VMDUMP command, CP dumps virtual storage of the
user’s virtual machine. The dump goes to the reader of the user who entered the
command, unless otherwise specified. CP can store this dump in the reader spool
file of any virtual machine that the user specified as an operand on the VMDUMP
command.

Dumps produced by the VMDUMP command and Diagnose X'94' will have two
different formats based on the architecture mode of the guest virtual machine. A
vmdump of an ESA/390 mode guest, such as one running CMS, will be in ESA/390
format and only contain storage up to 2 GB. This format is the same as dumps that
were produced in previous releases. DVF DUMPSCAN or VM Dump Tool can be
used to analyze dumps in this format. A vmdump of a z/Architecture mode guest,
such as one running z/VM CP or Linux for zSeries, will be in z/Architecture format
and will include storage over 2 GB if such storage exists. Only VM Dump Tool can
be used to analyze dumps in z/Architecture format.

The first logical dump record contains the symptom information. The second logical
dump record contains the Dump File Map. Some of the later records contain the
Dump File Information Record (DFIR), the Address Space Information Record
(ASIBK) and the dumped storage.

CP records the storage dump sequentially starting with the lowest address dumped
and ending with the highest address dumped. CP records each byte as an
untranslated 8-bit binary value.

The VMDUMP command dumps virtual storage that z/VM created for the virtual
machine user. VMDUMP creates a symptom record that provides the VM Dump
Tool with header information to identify the owner of the dump. After DUMPLOAD
creates the CMS file from the VMDUMP system data file, the DVF DUMPSCAN or
the VM Dump Tool may be used to debug errors, as well as to store and maintain
error information about the virtual machine.

Chapter 5. Debugging CP 65

66 z/VM: Diagnosis Guide

Chapter 6. Debugging CF Service Machine Problems

This chapter describes how to gather information pertinent to debugging a Coupling
Facility (CF) service machine.

A CF service machine is a special type of virtual machine that enables a sysplex
environment to be defined on a z/VM system. A CF service machine runs the
Coupling Facility Control Code CFCC (Licensed Internal Code). This code is not
part of the z/VM product and is loaded directly from the processor controller into the
CF service machine’s virtual storage.

Determining the Status of the CF Service Machine

The user that is defined as the secondary user of the CF service machine can issue
a limited set of regular CFCC Commands to retrieve information about the coupling
environment. This is the user ID that is specified on the CONSOLE statement of the
CF service machine directory definition. The following CFCC commands may be
helpful to diagnose problems with the CF service machine:

* DISPLAY MODE

* DISPLAY CHPIDS

» DISPLAY RESOURCES
» DISPLAY LEVEL

If the CF service machine does not respond to these commands, the CF service
machine may be hung or may have abended. Follow the steps in the next section
to diagnose problems where the CF service machine is unresponsive.

Steps to Follow When CF Service Machine Abend Occurs

When the CF service machine detects a problem, it creates a dump and does not
automatically restart itself. When this occurs, you should gather information about
the current environment. This information will be useful for diagnosing the problem.

» Save the spooled console log of the secondary user of the CF service machine.
This is the user ID that is specified on the CONSOLE statement of the CF
service machine directory definition. The CF service machine may have
displayed a message indicating the cause of the problem. If the console of the
secondary user was not spooled, write down any messages that were sent from
the CF service machine.

* Record information about the current system such as:

What processor model is z/VM running on?

Has the processor model changed recently?

Has the processor Licensed Internal Code been changed recently?
What was the system load at the time of the problem?

* Have the system operator take a CP SNAPDUMP of the system.

» Have the system operator issue the CP RESTART MSGPROC command to
restart the CF service machine.

After the CF service machine restarts, record the release and service level of the
CF service machine. This is displayed on the secondary console of the CF service

machine during its initialization. This can also be displayed with the CFCC DISPLAY
LEVEL command.

© Copyright IBM Corp. 1991, 2005 67

Debugging CF Service Machine problems

Finding the CF Service Machine Dump

When the CF service machine detects a problem, it creates a dump. The CF
service machine uses the CP VMDUMP command to dump specific ranges of
storage of its virtual machine. The dumps go to the reader of the CF service
machine.

Processing a CF Service Machine Dump

Because the CF service machine is not set up to process dumps, you need to
transfer the dump file to another virtual machine to process it.

After the dump has been transferred to your virtual machine, load the dump onto a
minidisk using the DUMPLOAD utility.

To load the dump, enter:
dumpload

See the [z/VM: CP Commands and Ultilities Referencd for more information about
the DUMPLOAD utility.

Diagnosing Problems for CF Service Machines

68

Problems with the CF service machine should be reported to the IBM Support
Center. The support center personnel will analyze the CF service machine dump in
order to determine the problem. Inform the support center if you have a CP
SNAPDUMP of the system at the time of the problem.

z/VM: Diagnosis Guide

Chapter 7. Debugging CMS

This chapter describes how to use the Conversational Monitor System (CMS) to
help you debug CMS or a problem program. In addition, a CMS user can use the
Control Program (CP) commands and facilities to debug. Information that is often
useful in debugging is also included.

Debugging Commands

Here is a list of some of the commands useful for debugging. The most useful CP
commands are:

TRACE, which traces specific virtual machine activity and records the results on
the terminal or printer.

DISPLAY, which displays real or virtual machine data at your terminal.
STORE, which alters real or virtual machine data.

VMDUMP, which dumps virtual storage in a different format than the DUMP
command. You can process the output produced by VMDUMP by using the
Dump Viewing Facility.

DUMP, which dumps real or virtual machine data at the printer.

In addition, you may also find the SET EMSG, SET IMSG, and SET WNG
commands helpful for debugging. These commands control the display of error
message handling, certain informational responses, and WARNING command
messages.

The CMS commands described in this chapter are:

SVCTRACE, which records information about supervisor calls (SVC) occurring in

a virtual machine. When the trace is ended, the information recorded up to that

point is spooled to the virtual printer.

The use of this command is described in more detail in[‘Using the SVCTRACE|

[command” on page 70)

SET AUTODUMP, which controls the creation of an automatic dump if an abend

occurs. The automatic dump can contain:

— The DMSNUC area of CMS, the storage management work area, the page
allocation table, and the loader tables

— A dump of the entire virtual machine and any discontiguous saved segments
in use.

The use of this command is described in more detail in|[‘Generating CMS Abend|
[Dumps” on page 78| QUERY AUTODUMP returns the current setting of the SET
AUTODUMP command.

The following CMS commands help you debug storage-related problems in your
applications:

© Copyright IBM Corp. 1991,

STDEBUG, which traces the obtain and release requests made by your
application. This information is displayed on your console or written to a unit
record device. The trace information includes:

— The number of bytes obtained or released

— The address of storage obtained or released

— The name of the subpool that owns the storage

— The address of the caller to storage management.

2005 69

Debugging CMS

« STORMAP, which provides storage information about your virtual machine. This
information is displayed on your console or written to a file. If you want to see
what is displayed, issue STORMAP CALL. The information may include:

— The total blocks of unallocated storage below and above the 16 MB line

— The size of the largest block of unallocated storage below and above the 16
MB line

— The name of the subpool that owns the storage

— The start address of the block of storage

— The end address of the block of storage

— The number of bytes of the block of storage

— The number of pages of the block of storage

— The storage protection key of the page in which the block resides
— Storage attributes.

* SUBPMAP, which provides storage allocation information for subpools in your
virtual machine. This information is displayed on your console or written to a file.
The information may include:

— The name of the subpool

— The storage protection key of the page

— The address of the subpool descriptor block
— The number of fully allocated pages

— The number of partially allocated pages

— Storage attributes.

In addition, several CMS commands produce or print load maps. These load maps
are often used to locate storage areas while debugging programs.

Using the SVCTRACE command

If your program issues many SVCs, you may not get all the information you need
using the CP TRACE command. The SVCTRACE command is a CMS command
that provides detailed information about all SVCs processed by your program,
including:

* Register contents before and after the SVC

* Name of the called routine and the location from which it was called

» Contents of the parameter list passed to the SVC.

See the [z/VM: CMS Commands and Utilities Referencd for the format of the
SVCTRACE command.

The SVCTRACE command has only two operands, ON and OFF, to begin and end
tracing. SVCTRACE information can be directed only to the printer so you do not
receive trace information at the terminal.

Because the SVCTRACE command can only be entered from the CMS
environment, you must use the immediate commands SO (suspend tracing) or HO
(halt tracing) if you want tracing to stop while a program is running. Use the
immediate command RO to resume tracing.

Because the CMS system is SVC-driven, this debugging technique can be useful,
especially, when you are debugging CMS programs. For more information on
writing programs to run in CMS, see the [z/VM: CMS Application Development
|Guide for Assemblel}

70 z/VM: Diagnosis Guide

Debugging CMS

Tracing Capabilities in EXECs

It may be helpful to trace EXECs that are used to diagnose problems. By tracing
the EXEC, you can follow the running of the EXEC and see intermediate values
that otherwise might not be obvious. There are two EXEC processors:

» System Product Interpreter
 EXEC 2.

The amount of information displayed while running an EXEC is controlled by an
instruction. The instruction depends upon the EXEC processor you are using. To
find the correct instruction, see the [z/VM: REXX/VM User’s Guide|or the EXEC 2
HELP menu for more information.

You can also turn tracing on for the System Product Interpreter or EXEC 2 by
entering the following CMS command:

set exectrac on

This causes the tracing bit in CMS to be turned on and allows tracing without
program modification.

During interactive debug, the interpreter pauses after every instruction, allowing you
to single step through the program.

Assume that you have a Restructured Extended Executor (REXX) program called
STATUS EXEC, which gives you some status information. The contents of STATUS

EXEC follows:

/* This EXEC gives user some status information. x/
trace ?i

say 'User ID: ' userid()

say 'Time : ' time()

say 'Date : ' date('w')',' date()

exit

Notice the command trace ?1i, which is the second line of the program. This
command causes the program to go into interactive debug and to trace:

» All clauses before they are run
* Intermediate results during evaluation of expressions
* Substituted names.

When the STATUS EXEC is run without the trace command, you get a result that
could look like this:

User ID: GEORGEB
Time : 09:50:54
Date : Thursday, 7 Apr 1993

When the STATUS EXEC is run with the trace command, you get a result that
could look like this:

3 *-x say 'User ID: ' userid()
>> "User ID: "
>F> "GEORGEB"
>0> "User ID: GEORGEB"
User ID: GEORGEB

+++ Interactive trace. TRACE OFF to end debug, ENTER to continue. +++

At this point, enter:

Chapter 7. Debugging CMS 71

Debugging CMS

trace off

to end debug, or press Enter to continue processing, and you get a result that could
look like this:

4 %-x say 'Time : ' time()
>> "Time : "
>F> "09:50:54"
>0> "Time : 09:50:54"
Time : 09:50:54

At this point, enter:
trace off

to end debug, or press Enter to continue processing, and you get a result that could
look like this:

5 %-% say 'Date : ' date('w')',' date()
> > "Date : "
>L> IIWII
>F> "Thursday"
>0> "Date : Thursday"
>L> n n

>0> "Date : Thursday,"

>F> "7 Apr 1993"

>0> "Date : Thursday, 7 Apr 1993"
Date : Thursday, 7 Apr 1993

At this point, enter:
trace off

to end debug, or press Enter to continue processing, and you get a result that could
look like this:

6 *-* exit

As you can see in the previous example, the intermediate results of steps 3 through
6 of STATUS EXEC were traced, and processing stopped at each step.

The z/VM Procedures Language VM/REXX Interpreter also has a TRACE function
and instruction. See|z/VM: REXX/VM Referencd for more information on using the
TRACE instruction and TRACE function.

Nucleus Load Map

Each time the CMS resident nucleus is built, a nucleus load map is produced as a
printer spool file by the HCP loader (HCPLDR). This occurs at the time the nucleus
load deck is IPLed from the reader. Save this load map. It lists the virtual storage
locations of nucleus-resident routines and work areas. Transient modules are not
included in this load map. When debugging CMS, you can locate routines using this
map. For information on obtaining a load map, see the |z/VM: Service Guide,

Module Load Map

The module load map of a disk-resident command module contains the location of
control sections and entry points loaded into storage. It may also contain certain
messages and card images of any invalid cards or replace cards that are in the
loaded files. This load map is useful in debugging.

72 z/VM: Diagnosis Guide

Debugging CMS

There are two ways to get a load map:

* When loading relocatable object code into storage, make sure that the MAP
option is in effect when the LOAD command is issued. Because MAP is the
default option, just be sure that NOMAP is not specified. A load map is then
created on the primary disk each time a LOAD command is issued. See the
[z/VM: CMS Commands and Utilities Referencd for a description of the LOAD
command.

* When generating the absolute image form of files already loaded into storage,
make sure that the MAP option is in effect when the GENMOD command is
issued. Because MAP is the default option, just be sure that NOMAP is not
specified. Enter the MODMAP command to display the load map associated with
the specified MODULE file on the terminal. See the |z/VM: CMS Commands and
[Utilities Reference|for a description of the GENMOD and MODMAP commands.

Note: The load map displayed by the MODMAP command includes the NUCON
and SYSREF areas; the load map created by the LOAD command does not.

CMS Abend Processing

When CMS abnormally ends, any abend exit routines established through the
ABNEXIT macro or the VMERROR or VMERRORCHILD event handlers established
through EventMonitor Create receive control. These exit routines allow you to
bypass CMS abend recovery and continue processing elsewhere. If no routine
exists or the exit routine returns to CMS, the following error message appears on
the terminal:

DMSABE148T System abend xxx called from vstor

where xxx is the abend code and vstor is the address of the instruction causing the
abend. CMS then waits for a command to be entered from the terminal.

Finding the Reason for the CMS Abend

Determine the reason CMS abnormally ended. |z/VM: CP Messages and Codes| lists
all the CMS abend codes, identifies the module that caused the abend, and
describes the action that should be taken whenever CMS abnormally ends.

Types of CMS Abends

The types of CMS abnormal ends are:
1. Program exception

Control is given to the DMSITP (CMS interrupt handler) routine whenever a
hardware program exception occurs. When a program running on a CMS virtual
machine abnormally ends (abends), you receive, at your terminal, the message:
DMSABE141T exception exception occurred at vstor in

routine routine

DMSITP invokes DMSABE (the abend routine) and returns your virtual machine
to the CMS environment. From the message you can determine the types of
program checks (such as operation, privileged operation, execution, protection,
or addressing) and, sometimes, the instruction address in your program at
which the error occurred.

Note: routine is the command name from the last SVC issued. This routine is
not necessarily the one that had the exception but is supplied to indicate
the last command that was running when the exception occurred.

2. ABEND macro

Chapter 7. Debugging CMS 73

Debugging CMS

Control is given to the DMSSAB routine whenever a user routine processes the
ABEND macro. The abend code specified in the ABEND macro appears in the
abnormal end message DMSABE155T. See the [z/VM: CMS Macros and|
[Functions Reference for more information on the ABEND macro.

Halt Execution command (HX)

Whenever the virtual machine operator signals attention and types HX, CMS
ends and responds with CMS. For more information on the HX command, see the
[z/VM: CMS Commands and Utilities Referencd,

System abend

A CMS system routine can abnormally end by issuing the DMSABN macro. The
first three hexadecimal digits of the system abend code appear in the CMS
abend message, DMSABE148T. The format of the DMSABN macro is in the
[z/VM: CMS Macros and Functions Referencel

AbnormalEnd API

An application may request a user or system abend through the AbnormalEnd
CSL interface. This function signals a VMERROR event in the abending
process, and if no recovery is performed, the VMERRORCHILD event is
signaled so that a parent process can monitor when a child process is
abending. See the |z/VM: CMS Application Multitasking book for more
information on the AbnormalEnd CSL routine.

Collecting Information
The following actions may be useful in determining the cause of a CMS abend:

1.

74 z/VM: Diagnosis Guide

Display the PSW. You can use the CP DISPLAY command to compare the PSW
instruction address with the current CMS load map to determine the module that
caused the abend. The CMS storage-resident nucleus routines reside in fixed
storage locations.

Also check the interruption code in the PSW.

Examine areas of low storage in your virtual machine.

You can find out more about the cause of the abend from the information in the

nucleus constant (NUCON) area of low storage:

a. Examine the program old PSW (PGMOPSW) at location X'28'. Using the
PSW and current CMS nucleus load map, determine the failing address.
Examine the SVC old PSW (SVCOPSW) at location X'20'.

Examine the external old PSW (EXTOPSW) at location X'18'. If the virtual
machine operator stopped CMS, this PSW points to the instruction running
when the stop request was recognized.

d. For a machine check, examine the machine check old PSW (MCKOPSW) at
location X'30'".

e. After you have identified the module that has caused the abend, examine
the specific instruction. See the source code listing if available.

f. If you have not identified the problem at this time, take a dump by issuing
the VMDUMP command.

Examine several other fields in NUCON to analyze the status of the CMS
system. If you are using a dump, you may return to NUCON to pick up pointers
to specific areas (such as pointers to file tables) or to examine other status
fields. The following areas of NUCON may contain useful debugging
information.
* The save area for low storage

This field, called LOWSAVE, is the first 160 bytes of low storage.

* The register save area

Debugging CMS

DMSABE, the abend routine, saves the user’s floating-point and general
purpose registers in the following fields:

Field Location Contents

FPRLOG X'160' User floating-point registers

GPRLOG X'180' User general purpose registers

ECRLOG X'1C0' User extended control registers

* The device
The name of the device causing the last I/O interrupt is in the DEVICE field
at X'26C".
* The last two commands or procedures processed

Field Location Contents

LASTCMND X'2A0' The last command issued from the CMS or XEDIT
command line. If a command issued in a CMS
EXEC abnormally ends, this field contains the name
of the command. When a CMS EXEC completes,
this field contains the name EXEC. EXEC 2 and
System Product Interpreter do not update this field.

PREVCMND X'2A8' The next-to-last command issued from the CMS or
XEDIT command line. If a command issued in a
CMS EXEC abnormally ends, this field contains the
name EXEC. When a CMS EXEC completes, this
field contains the last command issued from the
CMS EXEC. EXEC 2 and System Product
Interpreter do not update this field.

LASTEXEC X'2B0' The last EXEC procedure invoked. EXEC 2 and
System Product Interpreter do not update this field.

PREVEXEC X'2B8' The next-to-last EXEC procedure invoked. EXEC 2

and System Product Interpreter do not update this
field.

The last module loaded into free storage and the transient area

The name of the last module loaded into free storage through a LOADMOD
is in the field LASTLMOD (location X'2C0'). The name of the last module
loaded into the transient area through a LOADMOD is in the field
LASTTMOD (location X'2C8').

The CMSCB chain

The pointer to the first CMSCB is in the FCBTAB field located atX'5C0'. Each
CMSCB contains simulated OS control blocks for a particular file or device
and resides in free storage. The CMSCB contains a PLIST for CMS 1/O
functions, a simulated job file control block (JFCB), a simulated data event
block (DEB), and the first in a chain of /O Blocks (IOBs). The first fullword of
each CMSCB contains a 24-bit pointer to the next CMSCB.

The last command entered

The last command entered from the terminal is stored in an area called
CMNDLINE (X'740", and its corresponding PLIST is stored at CMNDLIST
(X'848").

The external interrupt work area

EXTSECT is a work area for the external interrupt handler. It contains:

— The PSW, EXTPSW.

Chapter 7. Debugging CMS 75

Debugging CMS

— Register save areas, EXSAVE1.
— A separate area for timer interrupts, EXSAVE.
* The I/O interrupt work area

IOSECT is a work area for the 1/O interrupt handler. The oldest and newest
PSW and CSW are saved. Also, there is a register save area.
* The program check interrupt work area
PGMSECT is a work area for the program check interrupt handler. The old
PSW and the address of the register 13 save area are stored in PGMSECT.
* The SVC work area
SVCSECT is a work area for the SVC interrupt handler. It also contains the
first four register save areas assigned. The SFLAG indicates the mode of the
called routine. Also, the SVC abend code, SVCAB, is located in this CSECT.
* The simulated Communications Vector Table (CVT)
The CVT, as supported by CMS, is CVTSECT. Only the fields supported by
CMS are filled in.
* The active disk table and active file table
For file system problems, examine the active disk table (ADT) or active file
table (AFT) in NUCON.

4. If monitoring a VMERROR or VMERRORCHILD event, you may retrieve event
data that gives information about the abend. The data can be mapped by
VNCABNH or VMASMABN macros. See the |z/VM: CMS Application Multitasking|
book for more information.

A sample utility program called DACBGEN is provided on the MAINT 193 disk. This
can be used to format CMS or CP control blocks into readable/printable formats. In

addition to providing output that can be formatted with BookMaster™, it can also be

used for customer-written control blocks that adhere to a prescribed format. Refer to
the DACBGEN README file on the MAINT 193 disk for details.

Note: The output from the DACBGEN uitility is z/VM product implementation
information for diagnosis and must not be used for programming purposes.

Register Use
To trace control blocks and modules, it is important to know the CMS general
purpose register (GPR) usage conventions:

GPR Contents

1 The address of the PLIST

12 The program’s entry point

13 The address of a 12-doubleword work area for an SVC call
14 The return address

15 The program entry point or the return code

This information should help you read a CMS dump. If it becomes necessary to
trace file system control blocks, you can use the TRACE GPR command described
in[z/VM: CP Commands and Ultilities Reference. With a dump, the results of the
trace, and a CMS load map, you should be able to find the cause of the abend. If
you choose to use a dump, the DUMPLOAD utility and the Dump Viewing Facility
will help you process and use it.

76 z/VM: Diagnosis Guide

Debugging CMS

Some Debugging Tips
Here are some tips for debugging after receiving a program check abend (for
example, DMSABE141T):

* DMSITP, the CMS program interrupt handler, or DMSABE, the CMS abend
processing module, issues error messages when a program check occurs. If a
SPIE or a STAE has been issued, control is passed to the specified routine;
otherwise, control passes to DMSABE to try to recover from the error. If the
message DMSITP144T is issued, the UFDBUSY byte is not zero and control is
halted after the message is typed. If the wait state bit is turned off in the PSW,
control continues as above. Also, if the error occurred during the running of a
system routine, control is halted until the wait state bit is turned off or CMS is
re-IPLed.

Note: Turning off the WAIT bit may cause damage. Use caution.

» To determine the registers and PSW at the time of the abend, get the address of
PGMSECT in the nucleus constant area (NUCON X'654'). The old PSW is stored
at label EPIEPSW, X'58' bytes into the DSECT. This is followed by the registers
at label EPIEREGS (X'18'). The program interrupt element (PIE), needed by
SPIE, primarily uses these areas. Registers 0 through 15 are stored at offset
X'3C'" into the DSECT. The SPIE/STAE routine or the DMSSAB routine uses the
other areas within the DSECT.

* Another aid to debugging is the SVC save area (SVCSAVE) for the virtual
machine. Offset X'5628' in NUCON points to these areas. The save areas are
easily recognizable by the check words ABCD and EFGH contained within them.
The address of the SVC caller is stored at offset 4, and the name of the routine
being called is saved at offset X'8'. At offset X'10', the old PSW of the caller is
stored, and offsets X'18' and X'1C' hold the addresses for the normal return and
the error return, respectively.

Registers 0 through 15 are stored at offset X'20', followed by the floating-point
register at X'60'. After the first check word (ABCD), the address of the next
SVCSAVE area is stored, followed by the address of the previous SVCSAVE
area and the address of the user’s area. If the address of the next or previous
SVCSAVE area is zero, the chain is ended.

Access registers 0 through 15 are stored at offset X'D4".

Using CMS to Debug

After an abend, you can use CMS to debug the problem. When the information
provided by the abend message does not immediately identify the problem in your
program, or if you think the debugging facilities of CMS are not appropriate, you
should begin debugging procedures using z/VM. For instructions on how to use the
CP commands, see [‘{Commands That Monitor Events” on page 29/ If you choose to
produce a dump to help you debug the problem, see [‘Reading CMS Abend Dumps”l
for information on reading a CMS dump. If you can reproduce the
problem, you can use the Dump Viewing Facility to process the dump or look at the
trace table.

The most common problem you might encounter is an abnormal end resulting from
a program interruption.

Sometimes the information provided by the abend message is enough for you to
correct the error in your source program, recompile it, and attempt to run it again.

Chapter 7. Debugging CMS 77

Debugging CMS

If a CMS command is now issued, the abend routine, DMSABE, performs abend
recovery and then passes control to the DMSINT routine to process the command
just entered.

Setting Machines to Automatically Create Dumps

Generating CMS Abend Dumps

By using the SET AUTODUMP command, you can automatically generate a dump
of your entire virtual machine or selected parts of it whenever a CMS abend occurs.
You can create a dump for irrecoverable CMS system abends for all abends that
occur in your virtual machine, or you can choose not to create a dump
automatically.

When you use the SET AUTODUMP command, you can generate a dump
containing the DMSNUC area of CMS, the storage management work area, the
page allocation table, and the loader tables.

SET AUTODUMP CMS generates a dump for the following system errors:
* Program checks within nucleus resident modules

* Irrecoverable errors in the file system

* lrrecoverable storage management errors

« All other errors that result in a disabled wait PSW.

SET AUTODUMP CMS is the default.

SET AUTODUMP ALL dumps storage for all abends in the virtual machine. In
addition to the abend conditions stated above, SET AUTODUMP ALL dumps
storage for:

* All program checks

* The use of the ABEND macro

* The use of the DMSABN macro.

The SET AUTODUMP CMS ENTIREVM and SET AUTODUMP ALL ENTIREVM
commands dump your entire virtual machine, all the discontiguous saved segments
(DCSSs) currently in use, and data spaces that contain server data (in CP format).

If you do not want to create dumps automatically, you can turn AUTODUMP off
using SET AUTODUMP OFF.

If you are unsure of the setting of AUTODUMP, enter the QUERY AUTODUMP
command for the current setting of your virtual machine.

If you have set AUTODUMP to ALL or CMS, the dump is produced using the CP
VMDUMP command. The dump is sent to the reader of the virtual machine that
abended. This user also receives a message saying that the dump has been taken.
For more information on the SET AUTODUMP and QUERY AUTODUMP
commands, see the [z/VM: CMS Commands and Utilities Reference.

You can use the DUMPLOAD utility to process the dump and the DUMPSCAN
command (CMSPOINT subcommand) of the Dump Viewing Facility to view it. For
more information on the DUMPLOAD utility see the|z/VM: CP Commands and
Utilities Reference; for more information on the DUMPSCAN command, see the
z/VM: Dump Viewing Facilityl book.

78 z/VM: Diagnosis Guide

Debugging CMS

Reading CMS Abend Dumps
If you want to produce an abend dump when CMS abnormally ends, enter:
#cp vmdump 0-end format cms dss

By issuing this command, a dump spool file is created and sent to your reader.
Re-IPL CMS and use the DUMPLOAD utility to format the dump into a usable form.
The dump formats and prints:

* Access registers

» General purpose registers (GPRs)

» Extended control registers

* Floating-point registers

» Storage boundaries with their corresponding storage protect key
* Current PSW

» Selected storage.

Storage is printed in hexadecimal representation, eight words to the line, with
EBCDIC translation at the right. The hexadecimal storage address corresponding to
the first byte of each line is printed at the left.

When CMS can no longer continue, it abnormally ends. To debug CMS, first
determine the condition that caused the abend and then find why the condition
occurred. To find the cause of a CMS problem, you must be familiar with the
structure and functions of CMS. You also need a current CMS nucleus load map to
analyze the dump.

Looking at Dump Errors

The CMSDUMP serviceability aid may be helpful when you are looking at CMS
control blocks or free storage chains within a CMS dump. The CMSDUMP aid is
shipped with z/VM version 5 release 2 on an “as is” basis, to optionally be installed
on the MAINT 193 disk. The documentation for CMSDUMP comes with the
serviceability aids package. For more information see the HELPXEDI CMSDUMP
file that comes with the package on MAINT’s 193 disk.

Creating Dumps in Case of Messages

By using the SET TRAPMSG command, you can automatically generate a dump of
your entire virtual machine or selected parts of it whenever a specific CMS
message occurs. Use the SET TRAPMSG command to set a trap to spring on a
particular message, and optionally, to specify how much storage to dump.

SET TRAPMSG ON must be specified with a message number or message ID
parameter. Unless a range is specified, the default dump range is ‘0 to vmsize-1'.

The dump will generate a VMDUMP format spool file when the trap springs. The
type of virtual machine being dumped is CMS. The dump can be viewed using the
Dump Viewing Facility.

You can check whether a TRAPMSG has been set using the QUERY TRAPMSG
command.

SET TRAPMSG OFF is the default setting.

For more information about the SET TRAPMSG command refer to the |zZVM: CMS
|Commands and Utilities Referencd,.

Chapter 7. Debugging CMS 79

Debugging CMS

Printing a CMS Dump File

Use the Dump Viewing Facility PRTDUMP command to print CMS dump files that
were previously created with the DUMPLOAD utility. See the [z/VM: Dump Viewing
Facility] book for more information on the PRTDUMP command and |z_/VM: Cﬂ

Commands and Ultilities Referencd for more information on the DUMPLOAD utility.

Commands That Alter the Contents of Storage

You can use the STORE (Guest Storage) and STORE (Host Storage) commands to
alter the contents of virtual machine storage and host storage, respectively.

You can use the ZAP and ZAPTEXT commands to alter modules, OS LOADLIBS,
TEXT libraries, or TEXT decks before the code is loaded and run.

The ZAP command is described in the [z/VM: CMS Commands and Utilitie
Referencd and the ZAPTEXT command is described in the lz/VM: VMSES/iél
Introduction and Referencd For information on the STORE (Guest Storage) and
STORE (Host Storage) commands, see [‘Altering Contents of Virtual Machine
Storage (STORE Guest Command)” on page 34|and [‘Altering Contents of Host|
Storage (STORE Host Command)” on page 35, as well as the |zA/M: CE|
Commands and Utilities Referencd.

Diagnosing SFS Related Application Errors

Applications and CMS commands manipulate files residing on the Shared File
System in the following ways:

» Callable Services Library (CSL) Routines
* CMS File System macros
* OS Simulation macros.

The causes of SFS related errors and warnings are well defined to applications that
use CSL routines, particularly when the extended error (WUERROR) parameter is
included when manipulating files on SFS.

Applications that use CMS file system or OS macros to manipulate SFS files may
not get enough information through the defined interface to enable an application
developer or system programmer to properly diagnose the cause of the error.
However, the internal DMSFSERR trace table maintains SFS diagnostic information
relating to recent errors and warnings detected by these macro services.

This table is allocated when the first SFS error or warning is detected by CMS File
System macro services following an IPL of CMS. It will maintain a number of error
records. That number is defined in the FVS control block, in the FVSFSSZ field.

The DMSFSERR table may be of particular benefit for intermittent errors, which are
difficult to trace.

The format and contents of the DMSFSERR table as well as the other CMS control

blocks referenced below are documented at the url:

www.ibm.com/eserver/zseries/zvm/library/ It can be located in storage of the virtual

machine experiencing the problem as follows:

1. Find the location of the AFVS field in NUCON (NUCON is at offset 0 in the
virtual machine.) The value in AFVS contains the address of the FVS control
block.

2. Locate the FVSFSER field in the FVS control block.

80 z/VM: Diagnosis Guide

Debugging CMS

3. If the value in the FVSFSER field is zero, there is no DMSFSERR trace table
allocated. If the value is non-zero, it will point to the start of the table.

4. The value in FVSFSER contains the address of the DMSFSERR table. Within
DMSFSERR, the value in FSESIZE indicates the size of the table in bytes. By
finding the value in FSECURSR and backing up one entry, you can find the
most recent error entry. Use the DMSFSERR macro to see how the data is
arranged. Note that date and time information can help you navigate through
the table. Also note that when the table is filled, it will wrap to the beginning.

In most cases the file id, file system operation name, return code, and reason code
data in the FS error trace table will be sufficient to diagnose the cause of the error.
These reason codes are documented in the CMS Messages and Codes
documentation in the CSL Reason Code section of the [z/VM: CP Messages and|

[Coded

Extended error information is available in many cases if additional diagnostic
information is needed. Refer to the WUERROR and FPERROR macro descriptions
in the [zZVM: CMS Macros and Functions Reference for the layout of SFS extended
error information.

The FS2SFSER sample program may be useful for displaying the contents of the
DMSFSERR trace table in your virtual storage. Note that it is distributed on an “as
is” basis, to be installed as a sample on the MAINT 193 disk. For more information,
see the file HELP FS2SFSER.

Diagnosing CMS File System Errors

In addition to application errors, the CMS minidisk file system may detect some
structural errors or irrecoverable processing failures. Some symptoms of file system
errors are:

* The CMS file system detects an irrecoverable error. This is accompanied by a
DMS1307T message; the system is placed in a disabled wait, and a VM dump is
generated.

* Files cannot be read from minidisk.

* A CMS formatted minidisk cannot be accessed (device error on access).
* Duplicate files appear on a CMS minidisk.

* Files disappear from a CMS minidisk.

Some file integrity errors may be temporary, for example, when a disk is accessed
read only and there are updates to the disk. However, other errors may be
indications that the minidisk has been damaged. While minidisk corruption may be
due to any number of factors, some of the more frequent include:

e Hardware /O errors

 Invalid configuration of minidisks (for example, overlapping minidisk extents in the
CP directory or allocation of the real pack not in PERM space.)

e Multiwrite links to a CMS formatted minidisk

» Applications that modify the virtual device addresses or links of minidisks
accessed in R/W mode without releasing the file mode .

» File mode 6 (update-in-place) files open for output during a system crash
* Minidisk caching of shared DASD

* Release of storage that is critical to the file system

» Overlays of critical file system storage

» Timing errors

Chapter 7. Debugging CMS 81

Debugging CMS

» Use of undocumented file system interfaces or control blocks by applications or
IBM program products.

« Storage management chain corruption
* VM/CMS system errors.

Notes:

1. CMS minidisk corruption may be experienced as a side-effect of other system
outages or failures, some that appear to be unrelated. It is therefore
recommended that you examine any EREP data when there is minidisk
corruption.

2. Minidisk corruption may be detected a long time after the minidisk was actually
corrupted. For example, when a file block is marked as belonging to two
different files (via pointer blocks or FSTs), frequently the error is first detected
when the second file is erased.

3. After any corruption of a minidisk has been detected, it is recommended that all
files unaffected by the corruption be copied to another disk, the corrupted disk
be reformatted, and data be copied back to the newly formatted disk. Otherwise
additional latent disk corruption may surface.

4. If I/O errors are present, you may wish to attempt to move the minidisk to
another physical pack.

5. Consider using MDCHECK to analyze minidisks in which corruption is
suspected. MDCHECK is an optionally installed diagnostic aid available on the
MAINT 193 disk. See[‘Diagnosis Tools Available” on page 83

6. When an error appears to be caused by a CP I/O error, return information may
be available in DIOSECT.

7. If a storage overlay is suspected, examine some of the following data areas:
a. Active Disk Table (ADT)
b. Active File Table (AFT) if one exists
c. Device Table (DEVTAB) for the affected device.

Diagnosing Data Compression Services System Errors

When using Data Compression Services to compress your data, you will be building
both a compression and expansion dictionary on your A-disk. You must set up your
A-disk as a read/write disk and allocate enough space so that the output files
generated by the CSRBDICV EXEC will execute correctly. Messages that are
requested with the msglevel argument will also be written to your A-disk. If sufficient
space is not allocated, the output will be incomplete and unpredictable results will
occur.

If you get the message
colaps must be X, L, AM, or AAM

when you are using the CSRBDICV EXEC to build compression and expansion
dictionaries, you must:

1. Check that one of the valid values has been entered in the colaps argument
positional offset

2. Ensure that there are no sequence numbers in the far right columns of the
SPECFILE data which would offset the positional specifications. If they are
present, delete the sequence numbers.

If you are using the CSRBDICV EXEC and a REXX fixed point overflow error
occurs, you must:

82 z/VM: Diagnosis Guide

Debugging CMS

1. Check that the SPECFILE data has been accessed correctly. The scanfilename
BDICT sf file will contain the SPECFILE data image read during processing.

2. Check that the maxnodes value which has been entered is large enough to
account for at least the base number of nodes in each size of dictionary.

Note: To ensure your maxnodes is always set correctly, do not set it for less
than the dictionary size number of entries. For example, a .5K dictionary
should have a maxnodes of at least 512; a 1K dictionary should have a
maxnodes of least 1024.

3. Check if the scan data is unusually large or the stepping argument of the
SCANFILE forces most lines to be hit in one pass. If this exists, then either:

* Increase the maxnodes value to a number near the value returned by the TN
argument for the maxnodes approximation, or

» Adjust the stepping argument value to hit fewer lines per pass.

After expanding a string of data, you may notice unexpected characters at the end
of the string. To correct this, you must check the CMPSC_BITNUM bit in the
CMPSC_DICTADDR_BYTES field of the CSRYCMPS area after a call to Data
Compression Services. If this bit is on, you must add 1 to the length of the source
area before calling Data Compression Services to expand your data. To test this bit,
use a TM instruction.

CMS OS/VSAM users can find error code information in the “OS/VSAM Error
Codes” section of the [z/VM: CMS Application Development Guide for Assembler for
OPEN, CLOSE, and I/O Request error code tables.

For more information on VSE/VSAM Data Compression Services, see VSE/VSAM
Version 6 Release 1 Commands, VSE/VSAM Version 6 Release 1 User’s Guide
and Application Programming, and VSE/ESA Version 2 Release 1 Messages and
Codes.

When Calling IBM Software Support

If the problem persists, and you are unable to determine the cause of the problem,
contact your IBM software support center. The following information will be of help
when diagnosing the problem:

1. System dumps are generated by DMSDKD1307T error messages when the file
system detects an irrecoverable error, unless SET AUTODUMP has been set to
off. These should be retained to analyze the problem if needed.

2. Make a copy of the affected minidisk as soon as possible after minidisk
corruption has been detected using the CP DASD Dump Restore (DDR) utility.

Diagnosis Tools Available
The following diagnosis aids may be useful in assisting you to diagnose file system

failures. These are provided on an “as is” basis, to be installed as samples on the
MAINT 193 disk.

AFTCHAIN may be used to determine what files are currently open, and
optionally display or format Active File Table entries associated with
each open CMS file.

MDCHECK may be used to validate the integrity of a CMS minidisk, and
optionally recover most of its contents. Note that when MDCHECK
is first run against a minidisk, pre-existing (or latent) disk corruption
may be detected.

Chapter 7. Debugging CMS 83

Debugging CMS

PRINTFST may be used to display the contents of a file status table (directory)
entry.

PRINTBLK may be used to display the contents of a minidisk file block.

Note that documentation for these service aids is included as part of the tools
themselves.

84 z/VM: Diagnosis Guide

Chapter 8. Debugging CMS Pipelines

This chapter describes how to debug a problem in CMS Pipelines. This information
includes techniques you can use to help isolate the problem to a particular stage of
a pipeline or to a particular module in CMS Pipelines. You can then provide the
information you collect to your IBM service representatives to assist them in
resolving the problem.

The following sections describe debugging:
» A program exception in CMS Pipelines

* Incorrect output from CMS Pipelines

* A CMS Pipelines stall.

Debugging a Program Exception in CMS Pipelines

A program exception in CMS Pipelines may be caused by an error in CMS
Pipelines or in a user program. Addressing or protection exceptions are often
caused by a user program calling another program with registers set incorrectly. To
isolate a program exception in CMS Pipelines, it is necessary to find the module
where the error occurred and the displacement of the failing instruction in the
module.

The first time CMS Pipelines is started, it installs itself as a nucleus extension. If
you do not know whether CMS Pipelines has been started, enter the following
command to start it and display an informational message about the version of
CMS Pipelines that you have started:

pipe query

After starting CMS Pipelines, if you enter:
nucxmap

you will see results similar to this:

Name Entry Userword Origin Bytes Amode (Attributes)
PIPE 03E4B5F0 03F788B8 03E4B5F0 00000000 31
PIPMOD 03E48000 03F788B8 03E48000 00086948 31 SYSTEM SERVICE IMMCMD

*PIPSYSF O0E29008 00000000 OOE29000 00021658 31 SYSTEM SERVICE
*PIPPTFF 03F49026 00000000 03F49000 00001738 31 SYSTEM SERVICE

DMSEXT 00E25000 00000000 OOE25000 00002478 24 SYSTEM PERM
DMSSEGLP 83F90398 00000000 00000000 00000000 31 SYSTEM PERM
SEGRSRV ~ 03F90398 00000000 03F90398 000007C8 31 SYSTEM SERVICE PERM
OVLYMGR ~ 00E99000 00000000 0OE99000 00001A88 ANY SYSTEM SERVICE PERM

NAMEFUSE 011D43A0 03F7F558 011D43A0 00000000 31 SYSTEM SERVICE
NAMEFSYS 011D43A0 O3F9E4E8 011D43A0 00000000 31 SYSTEM SERVICE
Ready;

PIPE is the bootstrap module used to load the CMS Pipelines module. PIPMOD is
the CMS Pipelines nucleus extension that contains the DMSPIPE module. From the
sample results shown previously, you see that PIPMOD is located at virtual storage
location 3E48000 and has a length of 86948 bytes. The address at which PIPMOD
is loaded in your virtual machine may be different.

Calculating the Displacements of the Failing Module

To calculate the displacement in PIPMOD of the failing instruction, subtract the
address at which PIPMOD is located from the address of the failing instruction.

© Copyright IBM Corp. 1991, 2005 85

Debugging CMS Pipelines

To determine the name of the failing module and the displacement of the failing

instruction within the module, follow these steps:

1. Enter the following command to create a file, PIPE MAP A, that contains a list of
the CMS Pipelines modules sorted in order of decreasing address:

pipe cms modmap dmspipe | strfind /FPL/ | > PIPE MAP A

Note: If you receive a message indicating a loader table overflow, you need to
increase the number of pages of storage to be used for loader tables.
See the SET LDRTBLS command in the [z/VM: CMS Commands and|
[Utilities Reference for more information.
2. Edit the PIPE MAP A file. Obtain the address of module FPLGDTEP, which is
the first module loaded in PIPMOD. It is the last module with a file name
starting with FPL listed in PIPE MAP A.
3. Add the value you calculated for the displacement of the failing instruction in
PIPMOD to the address of FPLGDTEP in PIPE MAP A. The sum is the address
of the failing instruction relative to the addresses contained in PIPE MAP A.
4. Using PIPE MAP A, find which module contains the address of the failing
instruction. You now have the name of the failing module.
5. Subtract the address shown in PIPE MAP A for the failing module from the sum
you calculated in step The result is the displacement of the failing instruction
in the failing module.

Recreating the Problem
Before recreating the program exception, enter the following CP commands:
set run off

This makes your virtual machine stay in a stopped state while you display the
contents of registers and storage.

trace prog
This causes CP to be entered as soon as the program exception occurs.

spool console * start
This creates a virtual reader spool file containing all line mode output displayed
at the console.

You are now ready to recreate the problem and record the diagnostic information.
When the program exception is reported by CP, follow these steps:

1. Record the address of the failing instruction displayed by CP.

2. Enter the following command to display storage just before and after the failing
instruction:

display txxxxxxxx

where xxxxxxxx is the address of storage a few bytes before the failing
instruction address.

3. Enter the following command to display the contents of the general purpose
registers:

display g

4. Enter the following command to display storage before the address contained in
the base regqister, register 12:
display txxxxxxxx.20

where xxxxxxxx is about 32 bytes less than the address contained in the base
register.

5. Enter the following commands:

86 z/VM: Diagnosis Guide

Examples

Debugging CMS Pipelines

begin
spool cons stop close

to capture the console output and place it in a spool file in your virtual reader.

6. Calculate the displacement of the failing instruction in PIPMOD.

7. Calculate the displacement of the failing module in PIPMOD and the
displacement of the failing instruction in the module.

The following are examples of program exceptions in the CMS Pipelines module,

DMSPIPE. To cause the program exceptions to occur, storage containing DMSPIPE

is intentionally altered for the purpose of illustration. Normally, if you receive a

program exception, storage has been altered unintentionally by a program error.

Example of a Protection Exception in CMS Pipelines

In this example, a ST (store) instruction at virtual storage location 03E94CES is
altered to use a base register of 4 rather than 13. This produces a protection
exception.

To determine the address at which DMSPIPE is loaded, enter:

nucxmap

Name Entry Userword Origin Bytes Amode (Attributes)
PIPE 03E4B5F0 03F788B8 03E4B5F0 00000000 31
PIPMOD 03E48000 O3F788B8 03E48000 00086948 31 SYSTEM SERVICE IMMCMD

*PIPSYSF OOE29008 00000000 00E29000 00021658 31 SYSTEM SERVICE
*PIPPTFF 03F49026 00000000 03F49000 00001738 31 SYSTEM SERVICE

DMSEXT 00E25000 00000000 OOE25000 00002478 24 SYSTEM PERM

Ready;

The contents of storage at 03E94CES8 is a ST instruction in DMSPIPE. The
following CP command displays storage contents at that address:

cp display tO3E94CE8.20

RO3E94CEO O5CO1FEE 90DE1004 5010D008 18FD18D1 F4 *........ & ..., J*

RO3E94CFO 98E1FOOC 18BDD20F BO6OCICE D20BB0O50 *q.0...K..-A.K..&*
Ready;

The ST instruction is altered by the following CP STORE command:

store sO3E94CE8 50104008
Store complete.
Ready;

The following CP command displays the altered storage contents:

cp display TO3E94CE8.20

RO3E94CEO 0O5CO1FEE 90DE1004 50104008 18FD18D1 F6 *........ & ..., J*
RO3E94CFO 98E1FOOC 18BDD20F BO6OCLCE D20BBO5O *q.0...K..-A.K..&*
Ready;

The following commands are entered to assist in debugging:

set run off
trace prog
spool console * start

Enter the following PIPE command to recreate the problem:

pipe cp query time | console
-> O3E94CE8 ST 50104008 >> 00000008 cC 2
*xx Q3E94CE8 PROG 0004 -> OOF3DEBO PROTECTION

Chapter 8. Debugging CMS Pipelines

87

Debugging CMS Pipelines

The following command displays the contents of the general registers:

display g

GPR 0 = O03F77CF0 03F6E470 0O3F77FEB 0000000B
GPR 4 = 00000000 03F781D8 03F77C70 00000364
GPR 8 = 03E94F09 03F781D8 0O3E94ECO 03F77C60
GPR 12 = 83E94CE2 03F71860 00000000 03E94CDC

In this example, register 15 is the base register. It points to the entry point address
of the module containing the failing instruction. The following command displays the
contents of storage a few bytes before the failing instruction (including the “eye

catcher”):

D T3E94CDC.40

RO3E94CDO 0OO00ODCA C3D7E2E8 D5E34040 90ECDOOC F6 *....CPSYNT*
RO3E94CEO 05CO1FEE 90DE1004 50104008 18FD18D1 Foveinnnn & ..., J*
RO3E94CFO 98E1FOOC 18BDD20F BO6OC1CE D20BBO50 *q.0... K. . -AK. L&
RO3E94D0O C1BE58FO 905005EF 9023B048 5040BO5C *A. .0 &L ..., & Lxx

RO3E94D10 4180B1B8 41FOB1B8 50FOBO64 50FOBO6C Kiven 0..80..80.%*

The following command resumes running of the PIPE command:

begin

FPLINX410E ABEND 000000C4 at O3E94CEC; PSW 03EC2000 83E94CEC 00040004.
FPLINX411I ... In CPSYNT; offset 0OO0OODE4 in FPLCOM 08/21/97 17.27.
FPLINX412I ... GPRO: 03F77CFO O3F6E470 03F77FEB 0000000B.

FPLINX412I ... GPR4: 00000000 03F781D8 03F77C70 00000364.

FPLINX412I ... GPR8: 03E94F09 03F781D8 03E94ECO 03F77C60.

FPLINX412I ... GPRC: 83E94CE2 03F71860 00000000 O3E94CDC.

FPLINX413I ... Store 03E94CEO: 05COLFEE 90DE1004 50104008 18FD18D1 98E1FO0OC.
DMSABE141T Protection exception occurred at 83E94CEC in routine PIPE

CMS

Note that CMS Pipelines detects the problem and issues the appropriate messages
needed to isolate the problem including the name of the failing module and the
displacement of the failing instruction in the module. (The displacement actually
points to the instruction following the failing instruction.)

The following command captures the console output and places it in a virtual reader
spool file:

spool console stop
Ready;

If CMS Pipelines had not issued messages containing the information needed to
isolate the problem, the failing module name and the displacement of the failing
instruction can be calculated. The following message:

DMSABE141T Protection exception occurred at 83E94CEC in routine PIPE

gives the address of the instruction following the failing instruction. The address of
the failing instruction is 03E94CES8. Enter the following PIPE command to create a
file, PIPE MAP A, containing a list of the CMS Pipelines modules and their
corresponding addresses:

pipe cms modmap dmspipe | strfind /FPL/ | > PIPE MAP A
Ready;

The following shows a portion of PIPE MAP A:

FPLRAN 3EOQE232
FPLCOMWR 3EOCF2A
FPLCOM 3EOCFO8
FPLRVR 3EOAF10

The following calculations are then performed:

88 z/VM: Diagnosis Guide

Debugging CMS Pipelines

address of failing instruction 03E94CE8
- address of PIPMOD (from NUCXMAP) 03E48000
= displacement of instruction in PIPMOD 0004CCE8
+ address of FPLGDTEP in PIPE MAP A 03DC1000
= address of failing instruction O3EODCE8

relative to PIPE MAP A addresses

The data in PIPE MAP A shows that address 03E94CES8 is in module FPLCOM.

address of failing instruction O3EODCE8
relative to PIPE MAP A addresses
- address of FPLCOM 03EOQCFO8

= displacement of instruction in FPLCOM 0000ODEO

The failing module is FPLCOM and the displacement of the failing instruction in
FPLCOM is 00000DEOQ. This information matches the information in the messages
issued by CMS Pipelines.

Example of an Operation Exception in PIPMOD
In this example, an L (load address) instruction at address 03E49434 in PIPMOD is
altered. This causes an operation exception.

To determine the address at which PIPMOD is loaded, enter the following
command:

nucxmap

The following shows a portion of the output from nucxmap:

Name Entry Userword Origin Bytes Amode (Attributes)
DMSEXT 00E25000 00000000 OOE25000 00002478 24 SYSTEM PERM
PIPMOD 03E49000 O3F4F560 O3E49000 00086948 31 SYSTEM SERVICE IMMCMD

*PIPSYSF 00E29008 00000000 00E29000 00021658 31 SYSTEM SERVICE
*PIPPTFF 03F4A026 00000000 03F4A000 00001738 31 SYSTEM SERVICE

Ready;

Storage at 03E49434 contains an L instruction. The following CP STORE command
changes the L instruction to load register 15 with zero:

store s03E49434 41F00000
Store complete.
Ready;

Enter the following commands to assist in debugging:

set run off
trace prog
spool console * start

Enter the PIPE command to recreate the problem:
pipe query level

00000000 ???? O3EC
*%% 00000000 PROG 0001 -> OOF3DEBO OPERATION

The following command displays the contents of the general registers:

Chapter 8. Debugging CMS Pipelines 89

Debugging CMS Pipelines

display g

GPR 0 = 00000001 O3F883EO0 OOEAEFA5 0000000C
GPR 4 = 00000000 00000000 03F87F98 03F88078
GPR 8 = 03F4C8F8 03F4F844 03FAF560 03F88000
GPR 12 = 83E49254 03F88000 83E4943A 00000000

The following command displays storage just before the address contained in the
base register, register 12:
D T3E49240.20

RO3E49240 (C8C50000 0024C6D7 D3CID5E7 DID59OEC F6 +HE....FPLINXRN..=*
RO3E49250 DOOCO5CO 5810D0O8 1FEE9ODE 100418FD Kt *

The following command resumes running of the PIPE command:

begin
DMSABE141T Operation exception occurred at 80000002 in routine PIPE

The following command captures the console output and places it in a virtual reader
spool file:

spool console stop
Ready;

In this case, CMS Pipelines does not issue any messages so calculations must be
performed to determine where the error occurred. The most likely cause of an
operation exception in low storage is a branch instruction with an incorrect branch
address. Because branches are normally performed using register 14 as the return
address, the contents of storage just before the address contained in register 14
must be examined to find the failing instruction. Storage contents at this address
were previously displayed while displaying storage at the address contained in the
base register.

Storage at 03E49438 contains 05EF which is a BALR 14,15 instruction. Because
register 15 contains a zero, the operation exception occurred. Therefore, the
address of the failing instruction is 03E49438. Note that storage just before the
BALR instruction contains the L instruction that was altered.

To calculate the name of the failing module and the displacement of the failing
instruction in the module, enter the following PIPE command to create a file, PIPE
MAP A, containing a list of the CMS Pipelines modules and their corresponding
addresses:

pipe cms modmap dmspipe | locate 1.3 /FPL/ | pipe map a
Ready;

The following shows a portion of PIPE MAP A:

FPLSQIPR 03E44COE
FPLSQIRR O3E44AF2
FPLSQIRB 03E44A02
FPLSQICR O3E448EA
FPLSQICM O3E447FA
FPLSQICN 03E48532
FPLSQIDZ O3E488E8
FPLSQL ~ 83E425E8
FPLSPXPT 83E424B0
FPLSPX 83E3F830

The following calculations are then performed:

address of failing instruction 03E49438
- address of PIPMOD (from NUCXMAP) 03E49000

= displacement of instruction in PIPMOD 00000438

90 z/VM: Diagnosis Guide

Debugging CMS Pipelines

+ address of FPLGDTEP in PIPE MAP A 03D55000

= address of failing instruction 03D55438
relative to PIPE MAP A addresses

The data in PIPE MAP A shows 03E49434 is in module FPLINX.

address of failing instruction 03D55438
relative to PIPE MAP A addresses
- address of FPLINX 03D55220

= displacement of instruction in FPLINX 00000218

The failing module is FPLINX and the displacement of the failing instruction in
FPLINX is 218.

Debugging Incorrect Output From CMS Pipelines

If a CMS Pipelines application fails to produce expected output or produces
unexpected output, you can use the following techniques to isolate the problem:

* Add temporary stages to the pipeline to write out the data as it passes from one
stage to another.

» Use the CMS Pipelines TRACE option.

Adding Temporary Stages to Write Out the Data

If a pipeline produces incorrect output, you can add temporary stages between
each stage of the pipeline to write the stream to an accessed disk or directory. This
helps you see what changes are made to the data as it passes from one stage to
another.

Example
Suppose you receive the following output displayed on an 80-column display
terminal after entering the NUCXMAP command:

Name Entry Userword Origin Bytes Amode (Attributes)
NAMEFIND 011D43A0 7FFFFFFF 011D43A0 00000000 31 SYSTEM SERVICE
PIPMOD 03E49000 00000000 O3E49000 00086948 31 SYSTEM SERVICE IMMCMD

*PIPPTFF OOE6E026 00000000 OOE6GE000 00003108 24 SYSTEM SERVICE
*PIPSYSF 00E4C008 00000000 OOE4CO00 00021658 31 SYSTEM SERVICE
DMSEXT 00DCBOOO 00000000 OODCBOOO 00002478 24 SYSTEM

PERM
ERASE 03F21F3E 00E95110 03F21910 00000000 31 SYSTEM SERVICE
NAMEFUSE 011D43A0 03F80B58 011D43A0 00000000 31 SYSTEM SERVICE
NAMEFSYS 011D43A0 03F9E5D8 011D43A0 00000000 31 SYSTEM SERVICE
Ready;

To sort the output by nucleus extension name and to discard the heading line and
the extra line containing the word PERM, create and start the following exec
procedure:
/% */
'pipe cms nucxmap',

"Inlocate string /Name/',

"InTocate string /PERM/',

"|sort 1.8',

"|console'’

The output displayed by the exec is:

Chapter 8. Debugging CMS Pipelines 91

Debugging CMS Pipelines

*PIPPTFF OOE6E026 00000000 OOE6EO00 00003108 24 SYSTEM SERVICE
*PIPSYSF OOE4C008 00000000 OOE4CO00 00021658 31 SYSTEM SERVICE
ERASE 03F21F3E 00E95110 03F21910 00000000 31 SYSTEM SERVICE
NAMEFIND 011D43A0 03F80E48 011D43A0 00000000 31 SYSTEM SERVICE
NAMEFSYS 011D43A0 O3F9E5D8 011D43A0 00000000 31 SYSTEM SERVICE
NAMEFUSE 011D43A0 03F80B58 011D43A0 00000000 31 SYSTEM SERVICE
PIPMOD 03E49000 O3F8FB8A8 03E49000 00086948 31 SYSTEM SERVICE IMMCMD

The exec sorted the output and removed the extra lines, but the information about
DMSEXT was incorrectly removed. To determine whether this is a user error or
CMS Pipelines error, add temporary stages to the exec to write the stream to your
A-disk as follows:

[* */

'pipe cms nucxmap',

> pipe templ a',

"l nlocate string /Name/',

"| > pipe temp2 a',

"| nlocate string /PERM/',

"| > pipe temp3 a',

sort 1.8',
> pipe temp4 a',
console'

The file, PIPE TEMP1, reveals the problem as a user error. The line containing the
string, PERM, is not a separate line of output. It is part of the DMSEXT line which is
longer than the maximum of 80 characters the terminal can display without
wrapping on to the next line. Note that the logical record length of PIPE TEMP1 is
85.

Using the CMS Pipelines TRACE Option

To generate a record of the processing of a PIPE command, use the TRACE
option. The trace information generated shows what stage is being run and what
data is passed from one stage to the next stage.

For more information about the TRACE option, refer to the “Debugging Pipelines”
chapter in the|[z/VM: CMS Pipelines User’s Guidd

Debugging a CMS Pipelines Stall

When a stage in a pipeline cannot run for whatever reason, it is blocked. When all
stages are blocked, the pipeline is stalled. A stage can be blocked when it has
written a record to its output stream but the record has not been consumed. A
record is consumed when a stage reads and removes the record from its input
stream. A stream can also be blocked when it is waiting to read a record from its
input stream, but no records are available.

When a pipeline stall is detected, CMS Pipelines displays messages describing the
state of the stages when the stall occurred as well as the reason why the stall
occurred. CMS Pipelines also writes a file, PIPDUMP LISTnnnn (where nnnn is a
number), to your A-disk. The file contains a dump of CMS Pipelines control blocks.
If the problem that caused the stall is a user error, you can erase the file. If you
cannot detect the problem from the messages, it may be useful to draw a diagram
of the stages, and correlate it to the stall messages. This can help determine
between which two stages the problem exists. If you suspect that the stall is caused
by a problem in CMS Pipelines, you can provide the dump to your IBM service
representative.

92 z/VM: Diagnosis Guide

Example

Debugging CMS Pipelines

Some stalls may be caused by the FANIN stage. Whenever possible, it is
recommended that you use the FANINANY stage rather than FANIN. FANIN reads
input records from a specified stream only. FANINANY reads input records from all
streams and will not cause a set of pipelines to stall. See the|z/VM: CMS Pipelines
for more information about the FANIN and FANINANY stages.

The CMS Pipelines TRACE option, which is described in r‘Using the CMS Pipelinesl
ITRACE Option” on page 92,|can also be used to generate a trace to help isolate
the problem causing the stall.

The following command causes a pipeline stall:

pipe Titeral xxx | a:fanin | a:
FPLDSPO29E Pipelines stalled
FPLMSGOO3I ... Issued from stage 2 of pipeline 1

FPLMSGOO1I ... Running "fanin"

FPLDSPO30I Stage is in state wait out

FPLMSGOO3I ... Issued from stage 1 of pipeline 1
FPLMSGOO1I ... Running "Titeral xxx"

FPLDSPO30I Stage is in state wait out

FPLMSGOO3I ... Issued from stage 2 of pipeline 1
FPLMSGOO1I ... Running "fanin"

Ready (-4095);

The pipeline stalled because there are no primary input stream records for the
FANIN stage to read.

Chapter 8. Debugging CMS Pipelines 93

94 z/VM: Diagnosis Guide

Chapter 9. Debugging the SFS Server or CRR Recovery
Server

The Coordinated Resource Recovery (CRR) facility requires a CRR recovery server.
The CRR recovery server functions reside in a Shared File System (SFS) file pool
server, so you could have the same server performing both SFS server functions
and CRR recovery server functions.

Hereafter, reference to a server, it could mean one of the following:
* A dedicated SFS file pool server

* A dedicated CRR recovery server

» Both an SFS file pool server and a CRR recovery server

For more information about SFS and CRR, see the [z/VM: CMS File Pool Planning)
|Administration, and Operation

The following sections describe the ways you can collect information for problem
diagnosis:

* [‘Using the Console Log” on page 96|

. “‘Using Server Dumps to Diagnose Problems” on page 99|

* “Using System Trace Data to Diagnose Problems” on page 101|

« [‘Using the SVCTRACE command” on page 70

Note: The server operator does not necessarily diagnose problems, especially from
the server virtual machine. Dumps and system trace data are normally used
by a system programmer or whoever is responsible for diagnosing system
problems.

Summary of Steps to Follow When a Server Abend Occurs

When a server abend occurs, you must follow these steps:
1. Collect information about the error.
» Save the console log or spooled console output from the server virtual
machine.
» Save and process any dumps that the server produces.
When an abend occurs in the server, either because the server issued an
abend or because a server or CMS operation caused a program exception,
the server produces a dump through the CP VMDUMP command described

in the |z/VM: CP Commands and Utilities Reference] CP sends the dump to
the server’s virtual reader.

Note: The DUMP startup parameter must have already been specified in the
server's DMSPARMS file to get a dump to the reader.

« Save any system trace files that contain server data.
2. Collect other types of information about system status, such as:
* The status of real and virtual devices that the server is using

* The system load at the time of the error on any systems using the server and
the status of each system (for example, did another system abend?)

* The types of applications that are using the server at the time, and any
information about them

© Copyright IBM Corp. 1991, 2005 95

Debugging SFS and CRR

* The physical connection configuration of the systems in use.

Using the Console Log
The server provides informational messages, as well as error messages, that may

help you with problem determination. To keep track of the console messages, enter:
spool console start to userid

userid can be the user ID of the server virtual machine or another virtual machine
user ID to whom you want the server to send the console log. You may want to add
this to the server's PROFILE EXEC so a console log is always created.

To close the console log, enter:
spool console close

The log of messages received is sent to the specified user ID. See the
[Commands and Utilities Referencd for details on the SPOOL command.

The server provides additional information at the time of an abend to help you
diagnose the problem. The console log contains information about the abend, such
as:

* The abend code
* The program old PSW
* The contents of the general purpose registers.

The server also attempts to determine the displacement of the module in which the
abend occurred and the displacement of the calling module.

Figures , and|§| show some of the messages that the server may issue in
response to an abend condition.

96 z/VM: Diagnosis Guide

DMSITP141T Operation exception occurred at 4E3E72 in routine DMS5IF

SDS

ADDR OFFSET

0051E0C4 00000000
0051E0D4 00000010
0051EOE4 00000020
0051EOF4 00000030
0051E104 00000040

ABTERM CODE OC1 AT

PROGRAM OLD PSW IS :

GPR
GPR
GPR
GPR 1

00000000
00000118
003707FC
00466A5F

N OoO
LU ||

FAILURE
FAILURE

CALLED FROM OFFSET +0002E9DO
CALLED FROM OFFSET +00000210

AT OFFSET +00058E70
AT OFFSET +0007E410

ABEND SAVEAREA :

DUMP DATA

FFEOOOC1 704E3E72 00000000 003707C8
0051E000 0051E848 00000118 00370702
00000118 00000000 003707FC 00370760
00372BEO 00465A60 00466A5F 00370760
70465EE8 004E3E70

OO4E3E70

FFEOOOC1 704E3E72
003707C8
00370702
00370760
00370760

0051E000
00000118
00372BEO
70465EE8

0051E848
00000000
00465A60
OO4E3E70

IN DMSSAC PROGRAM
IN DMS3SP 89.082

IN DMSDAC PROGRAM
IN DMS3RA 89.080

STORAGE NEAR FAILURE :

ADDR OFFSET

004E3E50 00000000
004E3E60 00000010
004E3E70 00000020
004E3E80 00000030
004E3E90 00000040

POTENTIAL WILD BRANCH AT :

BAL(R)
BAL(R)
ADDR OFFSET

00465ECO 00000000
00465EDO 00000010
00465EEQ 00000020

00465EFO 00000030
00465F00 00000040

AT OFFSET +0005CEE6 IN DMSDAC PROGRAM
AT OFFSET +00000486 IN DMS3SP

DUMP DATA

00030000 OOOOFFFF O04FACBO 004DD958
00000080 00000000 00502330 00000000
00000000 10C4D4E2 F5C7D440 404040F8
F94BFOF8 F10090EC DOOC18CF 5800C7DC
58E0A014 58FOE130 5810F008 1E015500

00465EE6

89.082

DUMP DATA

912F5020 90744120 91375020 90784120
BB585020 907C5820 908C5820 201058F0
21D04110 906805EF 12FF4780 B4E65820
A2F041E0 022613EE 50E02018 1FEEO6EQ
50E0201C 50F02020 D207203C BB5040F0

(0048B000)

(00409000)

(00409000)

Debugging SFS and CRR

AB/00C1 PIDS/5684-112 RIDS/DMS3SP ADRS/0007E410

Figure 7. Server Console Log (Operation Exception Occurred)

Chapter 9. Debugging the SFS Server or CRR Recovery Server 97

Debugging SFS and CRR

DMSITP141T Protection exception occurred at 4FEAFE in routine DMS5IF

SDS ABEND SAVEAR

ADDR OFFSET

005390C4 00000000
005390D4 00000010
005390E4 00000020
005390F4 00000030
00539104 00000040

ABTERM CODE 0C4 AT

PROGRAM OLD PSW IS :

GPR 0 = 00000000
GPR 4 = 00000118
GPR 8 = 0038B7FC
GPR 12 = (004FEA80

FAILURE AT OFFSET
FAILURE AT OFFSET

CALLED FROM OFFSET
CALLED FROM OFFSET

STORAGE NEAR FAILUR
ADDR OFFSET
004FEAD8 00000000
004FEAE8 00000010
004FEAF8 00000020

004FEBO8 00000030
004FEB18 00000040

AB/00C4 P

Figure 8. Server Console Log (Protection Exception Occurred)

98 z/VM: Diagnosis Guide

EA :

DUMP DATA

FFEOOOC4 AO4FEAFE 00000000 0038B7C8
00000000 00539848 00000118 0038B702
00000118 00000000 0038B7FC 0038B760
0038DBEO 00000000 004FEA80 0038B8AO
0038D1A0 OO4FEA80

OO4FEAFA

FFEOOOC4 AO4FEAFE
0038B7C8 00000000 00539848
0038B702 00000118 00000000

0038B760 0038DBEO 00000000
0038B8AO 0038D1A0 OOA4FEA8O

LU) I P H %
K i eeeesscceseaan *
K e eeeseccsesnns - %
K e [ooenne *
* 0. *

+00058AFA IN DMSSAC PROGRAM (004A6000)

+0000007A IN DMS5GM 89.065

+0005D03E IN DMSDAC PROGRAM (00424000)

+00000486 IN DMS3SP 89.065

E :

DUMP DATA

E13047F0 C0245000 FOO818B1 50DOB0OO4
50BODOO8 98F1DO10 18DBD217 B0O481000
1F225020 B1405820 B0485820 20005020

B144183A D5063000 C7824770 COA25890
30145820 901C47F0 COAE182A 58902014

IDS/5684-112 RIDS/DMS5GM

E T &, *

S | TR ¢ D *

o [N *
ADRS/00000000

Debugging SFS and CRR

DMS5FE3040E File pool server system error occurred - DMS4CI 05
SDS ABEND SAVEAREA :

ADDR OFFSET DUMP DATA

0051D0C4 00000000 00000000 5049528E 00000010 00495A3C *&.........1. *
0051DOD4 00000010 0038CO00 0038CI1EC 00391016 0000000D = Acooooit, *
0051DOE4 00000020 00000008 00000012 00000001 00000012 *ccvvnn... *
0051DOF4 00000030 00371340 0036FDF8 00494C90 0036FDF8 *8..<....8 *
0051D104 00000040 50495290 00500D48 * & 8 *
GPR 0 = 00000010 00495A3C 0038C000 0038C1EC
GPR 4 = 00391016 0000000D 00000008 00000012
GPR 8 = 00000001 00000012 00371340 0036FDF8
GPR 12 = 00494C90 0036FDF8 50495290 00500D48

FAILURE AT OFFSET +0000B28C IN DMSSAC PROGRAM (0048A000)
FAILURE AT OFFSET +000005FC IN DMS4CI 89.058

CALLED FROM OFFSET +0005265A IN DMSSAC PROGRAM (0048A000)
CALLED FROM OFFSET +00000192 IN DMS4SR 89.081

DMS4SB3126E SAC termination during forward processing
LUWID = 57F5 USERID = BRAZIE
OPERATION = BULK INSERT
CATALOG-ID = 6503
PAGE-ADDRESS = 392000 PAGE-TYPE = INDEX
PAGE-NUMBER = 112A

MS/DMS3040E PIDS/5684-112 RIDS/DMS4CI PRCS/05

Figure 9. Server Console Log (File Pool Server System Error Occurred)

Using Server Dumps to Diagnose Problems

You can use the Dump Viewing Facility to collect and diagnose problem data for the
server virtual machine. The console listing, as described in[‘Using the Console Log’|

may help you diagnose problems without using dumps.

The steps involved in using dumps to diagnose problems are:
1. Create the server dump

2. Process the server dump

3. Diagnose the server dump

4. Print the server dump.

Creating a Server Dump

The server virtual machine creates its own dumps. The dumps go to the reader of
the server virtual machine. (The DUMP startup parameter must have already been
specified in the server's DMSPARMS file to get a dump to the reader.) Because the
server virtual machine is not set up to process dumps, you need to transfer the
dump file to the appropriate virtual machine.

If the server virtual machine cannot create the dump, you can use the VMDUMP
command. The VMDUMP command dumps virtual storage that z/VM creates for the
virtual machine user, in this case for the server. If you enter the following CP
command:

vmdump 0-end system format sfs

Chapter 9. Debugging the SFS Server or CRR Recovery Server 99

Debugging SFS and CRR

the dump goes to the virtual machine specified by the DUMP operand of the
SYSTEM_USERIDS statement in the system configuration file. Do not use the
reserved names ATSCAB1 or ATSCAB2 for the dump ID of VMDUMP. See the
lz/VM: CP Commands and Ultilities Reference for more information on the VMDUMP
command.

Processing a Server Dump

After the server virtual machine creates a dump, load the dump onto disk. To load
the dump, enter:

dumpload
The default map file is SFSDVF MAP.

After you have loaded the dump, you can use the Dump Viewing Facility to format,
process, view, and print the dump. To do this, enter:

dumpscan dumpname

When you enter the DUMPSCAN command, it checks for a server extraction routine
to update the symptom record, transmit it to the symptom record repository, and
update the dump.

See the [z/VM: Dump Viewing Facilitylbook for more information about the
DUMPSCAN command, and the |z/VM: CP Commands and Ulilities Referencd for
more information about the DUMPLOAD utility.

Diagnosing a Server Dump

100

The DUMPSCAN command uses a symptom record, which is based on problem
report information. The symptom record helps you find out why the server created
the dump. The symptom record includes:

* Information about the system environment at the time of the dump

* The symptom string that contains the following component-related symptoms:
The error code

The ID of the failing component

The ID of the failing module

The registers and PSW contents.

To see the symptom information, use the SYMPTOM subcommand of DUMPSCAN.

You can use the other DUMPSCAN subcommands to examine the dump
interactively. The following sections introduce those subcommands specifically for
the server.

Formatting and Displaying Trace Records
You can scroll through the formatted output with either of the following DUMPSCAN
subcommands:

» TRACE SCROLL or TRACE SCROLLU
* SCROLL or SCROLLU.

See |z/VM: Dump Viewing Facility| for more information about the DUMPSCAN
TRACE and SCROLL subcommands.

z/NM: Diagnosis Guide

Debugging SFS and CRR

Printing a Server Dump

The PRTDUMP command of the Dump Viewing Facility prints the dump and
symptom record that DUMPSCAN processed. The output you get consists of the
following:

* A symptom record
* A dump in hexadecimal (no special formatting)
* The contents of the registers and the PSW.

See the |z/VM: Dump Viewing Facility|book for more information on the PRTDUMP
command.

Using System Trace Data to Diagnose Problems

While the server maintains an internal trace table within the server virtual machine,
it also writes trace entries to the system TRFILE file. You can use the Dump
Viewing Facility to format and display the trace table entries.

If you use the CP TRSOURCE command to create trace entries or the CP TRSAVE
utility to save trace entries, you can format them with the CP TRACERED utility.
You can then use DUMPSCAN to view server entries. For more information about
the DUMPSCAN command, see the [z/VM: Dump Viewing Facility} For information
about the TRACERED utility and the TRSAVE command, see the|z/VM: CE|
[Commands and Utilities Referencd.

Setting Internal Tracing

The server ITRACE command lets you enable or disable internal tracing for the
server virtual machine. If you want to collect server trace records, enter the
following from the server virtual machine after TRSAVE is started:

itrace on

If you want to stop tracing for the server, enter:
itrace off

ITRACE traces APPC/VM communications between the server machine and CMS
users.

You may also start tracing, using ITRACE, by specifying the proper startup
parameters when the server machine is started.

To process the internal trace output, use the Dump Viewing Facility to view the
results.

A complete description of the ITRACE command is in the [zVM: CMS File Pool
|Planning, Administration, and Operatior| book.

Setting External Tracing

The server ETRACE command lets you enable or disable external tracing for the
server virtual machine. If you want to collect server trace records, enter the
following from the server virtual machine after TRSAVE is started:

etrace on

After you enter ETRACE ON, a series of prompts allow you to specify the type and
level of data to be traced. The prompts you will receive are for:

Chapter 9. Debugging the SFS Server or CRR Recovery Server 101

Debugging SFS and CRR

102

* Which user ID processing will be traced. You can specify a single user ID or all
user IDs with an asterisk (*).

* What type of server processing will be traced. In response to this prompt, you
can specify SAC, DAC, or both to indicate the type of server processing.

» Server tracing of the subcomponents and the trace level desired.
A 0 may be entered as a response to any prompt to cancel the ETRACE command.

If you want to stop tracing for the server machine enter:
etrace off

You may also start tracing with the ETRACE command by specifying the proper
startup parameters when the server machine is started.

To process the external trace output, use the Dump Viewing Facility to view the
results.

When you set external tracing on, certain internal server trace records are written
externally to a spool file. A complete description of the ETRACE command is in the
[z/VM: CMS File Pool Planning, Administration, and Operatior] book.

Other Diagnostic Facilities

There are other diagnostic aids that may be useful when working with IBM support
personnel for diagnosing SFS server errors. These are distributed on an “as is”
basis to be installed as a sample on the MAINT 193 disk. These include:

SFSDOT
A set of SFS operator commands that may be useful when attempting to
diagnose problems.

LCTRACE
A facility to trace interactions between a user machine and the Shared File
System (SFS). LCTRACE is invoked from a user machine’s CMS session.

Note that not all of the output formats are documented, as these are designed for
IBM System Support personnel use.

z/NM: Diagnosis Guide

Chapter 10. Debugging GCS

The Group Control System (GCS) is a multitasking operating system and is a
component with z/VM. Only XA or XC virtual machines may use GCS.

XA and XC virtual machines run with the full capabilities of z/VM. Either 24-bit or
31-bit addressing can be used (thus allowing addresses below and above 16 MB),
as well as the more efficient I/O using the Channel Subsystem.

While running programs on the Group Control System (GCS), you can encounter
the following types of problems:

* Loops

* Abends

* Incorrect results

+ Disabled wait states. 3

To help you deal with these problems, GCS provides:
* Internal tracing facilities (see page |

« External tracing facilities (see page[121)

+ Dumping facilities (see page|128)

 Interactive debugging support (see page.

Internal Tracing Facilities

The GCS supervisor maintains a wraparound trace table that serves:

» Each virtual machine individually in a group if the trace table is placed in the
virtual machine’s private storage

» All virtual machines collectively in a group if the trace table is placed in common
storage.

The trace table is placed in private storage by default unless common storage is
specified when the GROUP EXEC is run at build time. When building your GCS
configuration file, you specify how big you want this table to be. The minimum you
can choose is 4 KB; the maximum depends upon how much common storage you
have available to use if you place the trace table in common storage. If you don’t
set a size limit, GCS gives you a default size of 16 KB. See z/VM: Guide for
Automated Installation and Service for more information about how to load, build,
and save GCS.

The trace table contains information about the following supervisor events:
» Task dispatches

» External interrupts

* /O interrupts

* Program interrupts

* SVC interrupts

* 1/O requests (SSCH, DIAGNOSE, HSCH, TSCH, which are called by the
supervisor)

* |UCV signal system service detail entries
* SVC GETMAIN storage requests

3. Outlined in [Chapter 1, “Introduction to Debugging.’]

© Copyright IBM Corp. 1991, 2005 103

Debugging GCS

* SVC FREEMAIN storage requests

* APPC/VM synchronous events

» Branch entry FREEMAIN storage requests
* Branch entry GETMAIN storage requests
» Service Point (SP) trace entries.

The tracing of supervisor events is activated as soon as your virtual machine joins a
group. You can trace data from any of your GCS programs (GTRACE events) by
entering the ITRACE command followed by the GTRACE macro. Service Point (SP)
trace entries are activated only if you enter ITRACE SP.

Using the ITRACE Command and GTRACE Macro

To begin tracing data in a virtual machine, you must enter from the console the
ITRACE command with the GTRACE option. Then the GCS application program
you want to trace must call the GTRACE macro. The GTRACE macro cannot begin
tracing unless you first enter the ITRACE command.

You can enter the ITRACE command for:
¢ Individual virtual machines
» Entire virtual machine groups.

Any virtual machine operator who enters it on behalf of the whole group (ITRACE
GROUP) must have an authorized user ID.

For more information about the ITRACE command and the GTRACE macro, see
the [z/VM: Group Control Systen] book.

Note: ITRACE of GTRACE records will only trace GTRACE records that are less
than or equal to 256 bytes. GTRACE records that are greather than 256
bytes and up to 8k can only be traced as external trace records.

Formats of Internal Trace Entries

Internal trace entries can be generated by applications from the GTRACE macro
and by the GCS supervisor.

GCS trace entries consist of a common 16-byte header followed by event-specific
data of up to 264 bytes.

Header Data

16 16 to 264

Note: In the following diagrams, reserved fields are indicated by the word
'‘Reserved' or by dashes (- -).

Trace Header Format
The 16-byte header looks like this:

104 z/vM: Diagnosis Guide

Debugging GCS

Header Data
T| T . i
y E Length | Machine --- Time-Of-Day
p |V ID Clock
e | C
1 1 2 2 2 8
Type

shows the type of trace entry:

Hex Code Trace Entry Type

o1 Dispatcher

02 External interrupt

03 I/0O interrupt

04 Program interrupt

05 SVC interrupt

06 I/0 request

07 IUCV signal system service details

08 SVC GETMAIN request

09 SVC FREEMAIN request

0A GETMAIN request through a branch entry
0B FREEMAIN request through a branch entry
oc APPC/VM synchronous event entry

OE GTRACE macro data.

TEVC (trace entry verification code)
keeps track of every time the table wraps around. The first set of entries will
have a TEVC of X'00'. Each time the table wraps around, this number increases
by 1 until it reaches X'FF'. After that, it recycles to X'00'.

By looking at this number, you will be able to identify entries left over from the
previous wraparound. This could be important, for example, if the GCS
supervisor secures a trace table slot and then gets interrupted by CP before
storing a new entry there. That slot would remain reserved, but unused, by the
interrupted machine. Other machines in the group, when dispatched by CP,
would create trace table entries in slots following it.

Length
contains the length of the whole entry, including this header. This length does
not include the space that follows GTRACE entries which aligns the next trace
table entry on a 32-byte boundary.

Machine ID
identifies the virtual machine associated with this entry. When the trace table is

Chapter 10. Debugging GCS 105

Debugging GCS

106

located in common storage, there is a single trace table for the entire GCS
group. It is important that you have the proper virtual machine identification.

Time-Of-Day Clock

indicates what time this entry was created in time-of-day format.

Trace Data Format
The data portion of trace entries can have any of the following formats:

Dispatcher (type X'01'), see page

External interrupt (type X'02'), see page

I/O interrupt (type X'03'), see page

Program interrupt (type X'04'), see page

SVC interrupt (type X'05'), see page

SIO (type X'06"), see page

IUCV signal system service (type X'07'), see page
GETMAIN through an SVC (type X'08'), see page
FREEMAIN through an SVC (type X'09"), see page
Branch entry GETMAIN (type X'0A"), see page
Branch entry FREEMAIN (type X'0B'), see page
APPC/VM synchronous event (type X'0C'), see page
GTRACE (typeX'OE"), see pag

z/NM: Diagnosis Guide

Debugging GCS

Dispatcher (type X'01')

Header Data
Task
T?Sk o Block Virtual PSW
Address
2 2 4 8
Task ID

identifies the task being traced.

Task Block Address
contains the address of a task control block for the task being dispatched.

Virtual PSW
contains the virtual PSW being dispatched.

Chapter 10. Debugging GCS 107

Debugging GCS

External Interrupt (type X'02')

108

Header Data
Inter - - Interrupt APPC/VM
Code Data Data Reserved

2 2 4 4 4
External Old PSW Reserved
8 8
Reserved
16
Inter Code

contains the External Interruption Code.

Interrupt Data
contains a value that depends on the type of external interrupt.

For a timer interrupt (code X'1004') it contains a pointer to the timer queue
element.

For an IUCV or APPC/VM interrupt (code X'4000') it contains a:

— 2-byte IPPATHID

— 1-byte IPFLAGS1

— 1-byte IPTYPE.

For all other types of external interrupts this is a reserved field.

APPC/VM Data
contains APPC/VM data.

z/NM: Diagnosis Guide

For an APPC/VM interrupt (code X'4000' with an IPTYPE of X'81', X'82',
X'83', X'87', X'88', or X'89'), it contains a:
— 2-byte IPCODE.

— 1-byte IPWHATRC—for a connect pending (type X'81') interrupt, this byte
contains the IPFLAGS2 field.

— 1-byte IPSENDOP.
For all other types of external interrupts this is a reserved field.

Debugging GCS

External Old PSW
contains the external old PSW. If an IUCV poll (rather than an external interrupt)
generates this entry, the external old PSW contains zeros (except for the
interrupt code).

Chapter 10. Debugging GCS 109

Debugging GCS

I/O Interrupt (type X'03')

Header Data

Device - -

Address Status

2 2 12
1/0 Old PSW Reserved
8 8
Reserved
16

Device Address
contains the device number (2 bytes) of the interrupting device.

Status
contains the subchannel status word (SCSW, 12 bytes).

/0 Old PSW
contains the 1/0 old PSW (8 bytes).

110 zvM: Diagnosis Guide

Debugging GCS

Program Interrupt (type X'04')

Header Data
Task Inter '
ID Code é Reserved Program Old PSW
2 2 1 3 8

Task ID
identifies the task being traced.

Inter Code
contains the Program Interruption Code.

IiLC
contains the Instruction Length Code.

Program Old PSW
contains the program old PSW.

Chapter 10. Debugging GCS

111

Debugging GCS

SVC Interrupt (type X'05")

Header Data
Task S
\Y; Flags - - SVC Old PSW
ID
C
2 1 1 2 2 8
Register1 Register0 Reserved
4 4 8
Command
16
Task ID

identifies the task being traced.

SvC
is the number of the SVC entered by the invoker (1 byte).

Flags
is a reserved field for all but two SVCs.

For SVC 203, it contains the flag and code parameter.

For a DOS SVC, the leftmost bit of this field is set to one, and the rest of
the 2 bytes is reserved.

SVC Old PSW
contains the SVC old PSW (8 bytes) for all SVCs.

Register 1
contains the contents of register 1 for all SVCs.

Register 0
contains the contents of register 0 for all SVCs.

Command
contains the first 16 bytes of the command for an SVC 202.

112 zvM: Diagnosis Guide

Debugging GCS

SIO (type X'06')

Header Data

F
Task Device | Instruction
ID Address Reserved cc a o Address
g
2 2 4 1 1 2 4
Task ID

identifies the task being traced.

Device Address
contains the virtual address of the device to which a Start Subchannel (SSCH),
Test Subchannel (TSCH), or Halt Subchannel (HSCH) command has been
issued. For TSCH, this is the virtual channel address.

CcC
contains the condition code from Start Subchannel operation. For GENIO
START, it contains the condition code returned by the SSCH instruction. For
GENIO STARTR, it contains the condition code returned by the DIAGNOSE
code X'98' SSCH subfunction.

Flag
indicates a GENIO START or START function has been issued and that the CC
field contains a valid condition code.

Instruction Address
contains the address of an /O instruction or a DIAGNOSE.

Chapter 10. Debugging GCs 113

Debugging GCS

IUCV Signal System Service (type X'07')

Header Data
Path - - Target _
ID Class Parameter List Data

Path ID
identifies a 2-byte IUCV path.

Target Class
identifies an IUCV target class containing the interrupt source’s signal ID and
type of signal sent.

Parameter List Data
contains IUCV parameter list data.

114 zvM: Diagnosis Guide

Debugging GCS

GETMAIN via SVC (type X'08')

Header Data
S K
Task Storage Invoker's

ID lt; 3 Address Length Address

2 11 4 4 4
Task ID

identifies the task being traced.
Sub

identifies the subpool of storage being requested. It contains zeros when:
* An SVC 4 fails because of an incorrect parameter list address

» The GETMAIN fails because of an incorrect mode byte

* The requested subpool was zero

Key
contains the following information:

Bits Description
0-1 contains LOC or position in storage where:
01 is below the line.
10 is resident storage.
1 is above the line.
Unused

3-6 contains the key of storage being obtained. It contains zeros when:
* An SVC 4 fails because of an incorrect parameter list address.
* The GETMAIN fails because of an incorrect mode byte.
« If either the length or the subpool is incorrect.
7 contains the fetch-protection signal. The rightmost bit of this field serves

as a fetch-protection signal. If the subpool of storage you request is not
fetch-protected, this bit is 0 (zero).

Storage Address
contains the address of storage obtained. If the GETMAIN failed, it contains
Zeros.

Length
contains the length of the storage requested. It contains zeros when:
* An SVC 4 fails because of an incorrect parameter list address.
* The GETMAIN fails because of an incorrect mode byte.

Invoker’s Address
contains the address that follows the invoker's SVC.

Chapter 10. Debugging GCS 115

Debugging GCS

FREEMAIN via SVC (type X'09')

116

Header Data
Task S) Storage Lenath Invoker's
ID E Address 9 Address
2 11 4 4 4
Task ID
identifies the task being traced.
Sub

identifies the subpool of storage being released. If the FREEMAIN fails, it
contains the subpool associated with the FREEMAIN.
It contains zeros when:
* An SVC 5 is entered with an incorrect parameter list address
* An unsupported MVS parameter is specified on the FREEMAIN macro
* An incorrect mode byte is encountered
* The requested subpool was zero.

Storage Address
contains the address of storage being released. If the FREEMAIN fails, it
contains the storage address passed to FREEMAIN.
It contains zeros for the following failures:
* An SVC 5 is entered with an incorrect parameter list address
* An unsupported MVS parameter is specified on the FREEMAIN macro
* An incorrect mode byte is encountered.

Length
contains the length of the storage released. If the FREEMAIN fails, it contains
the length passed to FREEMAIN.
It contains zeros for the following failures:
* An SVC 5 is entered with an incorrect parameter list address
* An unsupported MVS parameter is specified on the FREEMAIN macro
* An incorrect mode byte is encountered.

Invoker’s Address
contains the address that follows the invoker's SVC.

z/VM: Diagnosis Guide

Debugging GCS

Branch Entry GETMAIN (type X'0A")

Header Data
Task S K Storage Length Invoker's
1D u e Address Address
b |y
2 1 1 4 4 4
Task ID
identifies the task being traced.
Sub

identifies the subpool specified in the GETMAIN request.

Key
contains the following information:

Bits Description
0-1 contains LOC or position in storage where:
01 is below the line.
10 is resident storage.
11 is above the line.
Unused

3-6 contains the key of storage being obtained. It contains zeros when:
* An SVC 4 fails because of an incorrect parameter list address.
» The GETMAIN fails because of an incorrect mode byte.
 If either the length or the subpool is incorrect.
7 contains the fetch-protection signal. The rightmost bit of this field serves

as a fetch-protection signal. If the subpool of storage you request is not
fetch-protected, this bit is 0 (zero).

Storage Address
contains the address of storage obtained. If the GETMAIN failed, it contains

zZeros.

Length
contains the length of the storage requested.

Invoker’s Address
contains the address following the invoker's GETMAIN call.

Chapter 10. Debugging GCs 117

Debugging GCS

Branch Entry FREEMAIN (type X'0B')

Header Data
Task S) Storage Lenath Invoker's
ID E Address 9 Address
2 11 4 4 4
Task ID
identifies the task being traced.
Sub

identifies the subpool specified in the FREEMAIN request.

Storage Address

contains the address of storage being released. If the FREEMAIN fails, it
contains the storage address passed to FREEMAIN.

Length

contains the length of the storage released. If the FREEMAIN fails, it contains
the length passed to FREEMAIN.

Invoker’s Address
contains the address following the invoker's FREEMAIN call.

118 zVM: Diagnosis Guide

APPC/VM Synchronous Event (type X'0C’)

Debugging GCS

Header Data
Path Data APPC/VM Reserved
Data
4 4 8
Path Data
contains a:

» 2-byte IPPATHID

* 1-byte IPFLAGS1

* 1-byte IPTYPE.
APPC/VM Data

contains a:

» 2-byte IPCODE

* 1-byte IPWHATRC—For a connect pending (type X'81') interrupt, this byte

contains the IPFLAGS2 field
* 1-byte IPSENDOP.

Chapter 10. Debugging GCS 119

Debugging GCS

GTRACE (type X'0E)

Header Data
—— ;(,\ -
Machine Task | AID | FID EID Reserved Appl Data
ID 1D
g
2 2 1 1 2 8 1to 256
Machine ID

identifies the virtual machine associated with this entry. When the trace table is
located in common storage, there is a single trace table for the entire GCS
group. It is important that you have the proper virtual machine identification.
This ID is the same data that is in the header.

Task ID
identifies the task being traced.

AID
indicates this is a data record. It always contains X'FF".

FID (format ID)
identifies the formatting module that handles this entry.

EID
contains information from the GTRACE macro’s ID parameter.

Appl Data
is up to 8192 bytes of data provided by the application. If internal tracing is
being used, then the maximum is 256 bytes.

Service Point (SP) Trace Entries
The SP trace entries appear as GTRACE records in the trace table with the
following EIDs and application data:

X'E400' Branch Entry to WAIT Data= Register1 (4 bytes)
Register14 (4 bytes)

X'E401" Branch Entry to SCHEDEX Data= The SCHEDEX Data Area
(85 bytes)

120 z/vM: Diagnosis Guide

Debugging GCS

X'E402' Branch Entry to [IUCVCOM Data= The IUCVCOM parameter list
(40 bytes)
X'E404' Branch Entry to VALIDATE Data= Register0 (4 bytes)

Register1 (4 bytes)
Register2 (4 bytes)
Register14 (4 bytes)

X'E405' Branch Entry to POST Data= Register1 (4 bytes)
Register14 (4 bytes)

See the ITRACE command in z/VM: Group Control System for more information on
SP trace entries.

External Tracing Facilities

You can collect trace data in the system trace files for later formatting and viewing.
This requires entering the following commands:

1. The TRSOURCE and TRSAVE commands
2. The ETRACE command.

See the [z/VM: CP Commands and Utilities Referencd for more information on the
TRSOURCE and TRSAVE commands; see the [z/VM: Group Control Systen book
for more information on the ETRACE command.

The users who enter the TRSOURCE command must have a Class C privilege user
ID. After the TRSOURCE commands have been entered, this machine can enter
the ETRACE command to commence tracing for its own application or ETRACE
GROUP for tracing the entire group (if it's an authorized machine). Use ETRACE to
specify which of the following events should be traced and recorded in the spool
file:

» Task dispatches

» External interrupts

* |/O interrupts

* Program interrupts

* SVC interrupts

* |/O requests (SIO and Diagnose)

Chapter 10. Debugging GCS 121

Debugging GCS

* |UCV signal system service details

* APPC/VM synchronous events

* GETMAIN requests

 FREEMAIN requests

» User trace data generated using the GTRACE macro.

The CP TRACERED utility provides the facility with processing of trace data defined
by the TRSOURCE command in system trace files. TRSOURCE defines what is
going to be traced. TRSAVE specifies where data from traces defined by the
TRSOURCE command are to be saved. CP and virtual machine data can be
merged to produce a consolidated output file in chronological sequence.

See ['/0 Debugging” on page 169 for guidance information on setting up tracing
activity for CP, GCS, VSCS, and VTAM.

Using the TRSOURCE Command

TRSOURCE controls and displays CP data and I/O tracing activity. It supports
definitions and control of 1/0, data, and guest tracing. It controls and displays the
status of guest tracing.

When you use the BLOCK option of TRSOURCE, trace data to be recorded is
buffered by GCS. In this mode, if the GCS supervisor fails or a system reset
occurs, the data remaining in the trace buffer cannot be sent to CP and is not
recorded by CP. However, if a dump is available, you can view the trace data
remaining in the buffer by finding the pointer to it in a system control block. See
[‘Locating the External Trace Buffer.’|

When you use the EVENT option of TRSOURCE, each trace record is sent directly
to CP with no buffering of the trace data. When the trace is running in EVENT
mode, there is no loss of data in the event the virtual machine loses control from
CP, but the performance gain of BLOCK mode is lost.

Locating the External Trace Buffer
You can locate the external trace buffer by doing the following:

Locate the Sl extension (SIE) address in the NUCON at displacement X'5C4"'
Locate the TAB address in the SIE at displacement X'A0'
Locate the external trace buffer address in the TAB at displacement X'C'.

Format of the External Trace Buffer
The format of the external trace buffer is:

Buffer | Length | CP Header | GCS Header User Data

Header
\— Trace Record

Repeats until buffer is full

The layout of the buffer header is:

122 z/vM: Diagnosis Guide

Debugging GCS

0 TRBFBLEN 0000000000 | TRBFHLEN 0000000000

8 TRBFMRG

10 TRBFFMT

18 DESC | 000000000000000 | TRBFTIME

Disp Name Length Description
(bytes)
0 TRBFBLEN 2 Number of bytes filled in buffer
2 TRBFRES1 2 Reserved
4 TRBFHLEN 2 Length of buffer header W/0O TRBFBLEN and TRBFRES1
6 TRBFRES2 2 Reserved
8 TRBFMRG 8 Name of merge routine
10 TRBFFMT 8 Name of format routine
18 TRBFDESC 1 Block descriptor set by CP on call to

DIAGNOSE X'EOQ'
19 TRBFRES3 3 Reserved
1C TRBFTIME 4 Time zone differential

The layout of the CP header is:

CPHTYPE | CPHHLEN | CPHCODE | CPHLTH 111111117

Disp Name Length Description
(bytes)

0 CPHTYPE 1 The type of CP header (3D)
1 CPHHLEN 1 The length of the CP header (in doublewords)
(Headers must end on doubleword boundary)
CPHCODE 2 Individualizing code
CPHRESER Reserved byte
3 CPHINDIV 1 GCS individualizing code byte
(The individualizing code values are the same
as the values in the TYPE field in HEADER1 of
the internal trace records.)
See |"Formats of Internal Trace Entries" on page 104.|
4 CPHLTH 2 Length of header + length of data
(This Tength includes the CPH DSECT and
the user data. It does not include any
round up of the record to a 16 byte
(DWORD) boundary.)
2 Reserved

N

N
—_

The layout of the GCS header is:

0 8 16
Supervisor record TOD USER
TIME 1D
0 8
GTRACE record
USER
ID

The layout of the user data is the same as for internal tracing entries. (See
[Tracing Facilities” on page 103).

Chapter 10. Debugging GCS 123

Debugging GCS

Using the TRSAVE Command

TRSAVE specifies where data is to be saved. Data from traces defined by
TRSOURCE may be saved in a system trace file.

A TRSOURCE/TRSAVE Command Example

The following is an example of a guest trace invoked by using the TRSOURCE and
TRSAVE commands:

trsource id gl type gt for rscs

trsave id gl size 40 keep 3

trsource enable id gl

trsource disable id gl
trsource drop id gl

Note: Between the commands TRSOURCE ENABLE ID G1 and TRSOURCE
DISABLE ID G1 in the above example, all tracing from the RSCS virtual
machine is collected in a TRFILE with file name G1.

Using the CP TRACERED Utility

The CP TRACERED utility reads and formats trace data. All files to be processed
must have been created under a valid current release. A total of five system trace
files can be merged. Only one CP system trace table file or tape may be included.
Therefore, you may specify one of the following:

* One CP system trace table file with up to four TRSOURCE trace files
* One CP tape with up to four TRSOURCE trace files
* Up to five TRSOURCE trace files.

A TRACERED Utility Example
The following is an example of CP data merged with virtual machine data:

If you entered the following:
tracered 0003 0004 cms cpvm out a (all hex

you might receive the following output:

---------------------------- 04/06/95 16:54:06 ===--==-==<mmmmmmmmmemee

CPU TOD CLOCK CODE ##xx#%xxx%% TRACE ENTRY CONTENTS w#sskssssknx

---------------------------- 04/06/95 16:54:32 =====mmmmmmmmmmmmmmmmmoooooo

33D17D82A640 A3888540 8481A381 40A396C2 C540D9C5 C3D6D9C4 SPID 0003
C5C4C9E2 40F3F240 EAE2C5D9

---------------------------- 04/06/95 16:56:00 ========mmmmmmmmmmmmmmmooooo

33D452F96400 A3888540 8481A381 40A396C2 C540D9C5 C3D6D9C4 SPID 0003
C5C4C9E2 40F3F240 E4E2C5D9

---------------------------- 04/06/95 16:56:19 ===m=mmmmmmmmmmmmmmmmmoooooo

0000 33E68389D640 0600 4C4C4C4C 00000026 008B1008 OOFADOOO 80522988 SPID 0004
0000 33E6838C9480 3300 D2C34040 004D3720 OOFADOOO OOFFD580 805229C8 SPID 0004
0000 33E6838DA260 2C00 00522178 OOE5E2D7 OO0FFB180 8050570E 8052219C SPID 0004
0000 33E6838EA840 0700 4C4C4C4C 00000001 OO86EOO8 OOFADOOO 8050572E SPID 0004
0000 33E683913620 2C00 00000004 0OD8C3D8 OOFFDE8O 805036BC 805055A0 SPID 0004
0000 33E683926000 2200 0086FO08 80001010 OOFADOOO OOFADOOO 0031FCB8 SPID 0004

124 z/vM: Diagnosis Guide

Debugging GCS

Using the QUERY TRFILES Command

Use the QUERY TRFILES command to display information about system trace files
that you own. This includes the spool ID, file nhame, and time of creation.

General Trace Information
You can find general information about external tracing in the [z/VM: Group Contro|

book.

Formatting and Displaying External Trace Records

The external trace file contains two different entries produced by GCS virtual
machines for:
* GCS supervisor records

« GTRACE records.

The format for supervisor records is as follows:

CP Header Userid Data
8 16
CP Header
contains an 8-byte header appended by CP when it gets the record.
User ID
identifies the virtual machine that the entry belongs to.
Data

contains the data portion of the event’s internal trace entry. *

The format for GTRACE records is as follows:

L 8 A|F E
CP Header Userid e (N TOD Clock | Data
0
n 0 D|D D
(J)
8 2 2 11 8 2 Variable
GTF Header
CP Header
contains an 8-byte header appended by CP when it gets the record.
User ID
identifies the virtual machine that the entry belongs to.
Len
contains the length of the entry, including the GTF header.
0000

is a reserved field in the GTF header.

4. Internal trace entry formats are described in[‘Formats of Internal Trace Entries” on page 104/

Chapter 10. Debugging GCS 125

Debugging GCS

AID
contains X'FF', indicating that this is a data record.

FID (Format ID)
identifies the formatting module used for this record.

TOD Clock
indicates when the record was built, in time-of-day format.

EID
contains information from the GTRACE macro’s ID parameter.

Data
contains the internal trace entry without the internal header (up to 8k).

The main reason you create an external spool file with TRSOURCE is to print out
or interactively display your trace information. The TRACERED utility ° lets you do
that by formatting trace entries in your external spool file and then printing your
external file or creating a CMS file. The TRACERED utility handles the formatting of
supervisor and GTRACE entries, sending both to a common format routine
(GCTYTD). The TRACERED utility formats supervisor records and GTF header
information. However, the applications being traced by means of the GTRACE
facility have to supply their own GTRACE formatting modules. If they do not, their
trace entries for the data portions of the records are printed unformatted, in
hexadecimal.

As TRACERED goes through the spool file, it examines each entry one by one.
Trace entries, which were recorded by GCS using a “MC 1, 10” instruction, are
passed to a GCS module GCTYTD for formatting.

For supervisor records, GCTYTD calls a GCS-supplied formatting routine named
GCTYTS to format it. However, for GTRACE records, GCTYTD uses GCS-supplied
formatting routines to format the GTF header part of the record. GCTYTD also
looks for another formatting routine, one supplied by the traced application, to finish
the data portion of the record. (It uses the GTRACE record’s 1-byte FID field to
locate this routine. The routine’s name must be GCTYTXxx, with xx being the
2-digit FID, and it must have a file type of TEXT.)

If the GCTYTD program cannot find a user-supplied formatting routine, it prints the
entry information in hexadecimal. If the program does find a GCTYTXxx TEXT, it
calls that routine.

For information about coding user-supplied formatting routines, including register
contents at the time they are called by the GCTYTD program, see the GTRACE
Macro in the [z/VM: Group Control System|

Examples of Formatted External Trace Table Entries

Here are several sample supervisor event entries as you would see them in your
external trace file.

* An entry type X'03' for an 1/O interrupt:

5. TRACERED is a CP data reduction utility that works on the system trace file created by TRSOURCE. For more information on
TRACERED, see the |z/VM: CP Commands and Ultilities Reference|book.

126 z/vM: Diagnosis Guide

Debugging GCS

3D 03 useridxx VM/GCS I/0 INTERRUPT
DEVICE ADDRESS = xxxx
STATUS = XXXXXXXX X X XXXXXX XX XX XXXX
OLD PSW = XX X X X X XX XXXXXXXX

* An entry type X'05' for an SVC interrupt:

3D 05 useridxx VM/GCS SUPERVISOR CALL INTERRUPT
SVC CODE = xx
TASK ID = xxxx
FUNCTION NAME = XXXXXXXX
PARM BYTES 8-15 = X'XXXXXXXXXXXXXXXX' = #XXXXXXXX*
REGISTER 1 = XXXXXXXX
REGISTER 0 = XXXXXXXX
OLD PSW = XX X X X X XX XXXXXXXX

* An entry type X'08' External Trace Table Entry by SVC GETMAIN:

3D 08 useridxx VM/GCS GETMAIN VIA SVC
TASK ID = xxxx
KEY = X XXXXXXXXXXXXXXXXXXX
SUBPOOL = xx
STORAGE ADDRESS = XXXXXXXX
LENGTH = XXXXXXXX
ISSUER ADDRESS = XXXXXXXX
LOC = xxxxx

* An entry type X'09' External Trace Table Entry by SVC FREEMAIN:

3D 09 useridxx VM/GCS FREEMAIN VIA SVC
TASK ID = xxxx
SUBPOOL = xx
STORAGE ADDRESS = XXXXXXXX
LENGTH = XXXXXXXX
ISSUER ADDRESS = XXXXXXXX

* An entry type X'0A' External Trace Entry by Branch Entry GETMAIN:

3D OA useridxx VM/GCS GETMAIN VIA BRANCH ENTRY

TASK ID = xxxx
KEY = X XXXXXXXXXXXXXXXXXXX
SUBPOOL = xx

STORAGE ADDRESS = XXXXXXXX
LENGTH = XXXXXXXX

ISSUER ADDRESS = XXXXXXXX
LOC = xxxxx

* An entry type X'OB' External Trace Entry by Branch Entry FREEMAIN:

3D 0B useridxx VM/GCS FREEMAIN VIA BRANCH ENTRY
TASK ID = xxxx
SUBPOOL = xx
STORAGE ADDRESS = XXXXXXXX
LENGTH = XXXXXXXX
ISSUER ADDRESS = XXXXXXXX

* An entry type X'OE' for a GTRACE entry:

Chapter 10. Debugging GCS 127

Debugging GCS

3D OF useridxx VM/GCS USER REQUESTED GTRACE
TIME OF DAY CLOCK = XXXXXXXXXXXXXXXX
LENGTH OF GTF HEADER AND TRACE DATA = xxxx
FORMAT ROUTINE ID = xx
EVENT IDENTIFICATION = xxxx
[formatted GTRACE data appears here. . . .]

Dumping Facilities

The Common Dump Receiver

To let you dump out the contents of virtual storage and see where problems have
occurred, GCS must provide a way around its own safeguard mechanisms.
Otherwise, your GCS dumps would be largely incomplete.

Rules of Authorization

If a dump is directed to an authorized user, all of the requested storage is dumped,
including the saved segments. If the dump is directed to an unauthorized user, only
the storage with a key of 14 and nonfetch-protected storage is to be dumped.

If you direct the dump to yourself or to another unauthorized user ID, you cannot
dump any fetch-protected areas or storage with a key other than 14. Unauthorized
dump receivers can accept only key-14 and other nonfetch-protected storage.

You can solve this problem by singling out one authorized virtual machine as your
common dump receiver. At build time, when creating your GCS configuration file,
you are prompted to name this common dump receiver. Choose any authorized
user ID, perhaps the same user ID that you specify as your recovery machine. Be
sure you list it on the GROUP EXEC’s screen of authorized GCS user IDs. If you
name a common dump receiver, GCS’s dump functions, described in
[GCS Dumps” on page 130, automatically send their output to it. ©

Interactive Debugging Support

Using Authorized Control Program (CP) Commands
Authorized user IDs can have access to the following CP debugging commands:
 BEGIN
+ DISPLAY
+ STORE
+ DUMP

Initially, these are Class G commands, available to all user IDs. You may want to
reclassify these commands to prevent unauthorized users from altering storage that
may effect other members of the GCS group.

For more information on controlling access to CP commands, see the [z/VM: CH
|Planning and Administration|book.

6. The exception is GDUMP, which optionally lets you choose another receiver.

128 z/vM: Diagnosis Guide

Debugging GCS

Analyzing Dumps
After storage has been dumped, it can be:
* Read into a CMS file

» Analyzed by the receiving virtual machine under CMS with the Dump Viewing
Facility

» Dumped to tape (using spool-to-tape) and sent to an IBM support center for
analysis.

The Dump Viewing Facility uses specialized routines for formatting GCS dumps.

To use the Dump Viewing Facility successfully in processing a virtual machine
dump, the minidisks containing GCS must be accessed before processing the dump
by the Dump Viewing Facility.

Dump Viewing Facility Features for GCS Dumps

Creating a GCS module map —
the Dump Viewing Facility MAP command looks for a nucleus load map
with the default name GCSNUC MAP *. It creates a module map called
GCSDVF MAP that contains a header and a compressed version of the
load map. The Dump Viewing Facility ADDMAP command appends the
module map to a formatted dump.

Printing formatted VTAM or VSCS control blocks —
Use the Dump Viewing Facility PRTDUMP command to specify whether you
want formatted VTAM or VSCS control blocks printed in a dump. You'll have
this option for any GCS- or VMDUMP-generated dump of type GCS or
RSCSV2. First you receive a prompt asking you if you want your dump
printed using the VTAM option. If you do not pick the VTAM option, you
receive a prompt asking you if you want your dump printed using the VSCS
option. If you do not choose either option, only summary information from
the dump is printed.

Viewing the GCS dump information —

Use the Dump Viewing Facility DUMPSCAN command to format a GCS
dump and to view it, along with the appended module map, interactively.
Use the Dump Viewing Facility BLOCKDEF utility to format control blocks
and to view them interactively. For more information, see [‘Processing GCS|
Dumps with the Dump Viewing Facility” on page 137|and the|zA/M: Dumgl

Viewing Facility| book.

Using the GCS debug tools —
Additional GCS debugging tools are available and may be helpful when
diagnosing GCS problems. When run against an existing GCS dump, these
tools may help by formatting trace tables, calculating storage used by load
modules, as well as mapping storage used by particular tasks. Other useful
debugging capabilities are also included with this tools package.

The GCSDUMP tools package is shipped with z/VM version 5 release 2 on
an “as is” basis, optionally installed on the MAINT 193 disk. For more
information, see the README SAMPGCS file that comes with package on
MAINT’s 193 disk.

Dumping VSAM Information

When VSAM detects certain internal logic errors, it produces a special dump, called
an IDUMP, that can help you identify those problems. To look at information in the

Chapter 10. Debugging GCS 129

Debugging GCS

dump header, use the DUMPID subcommand of DUMPSCAN. This dump header
contains the following information:

VSAM IDUMP | 24—character symptom string | MM/DD/YY | HH:MM:SS | SAVEAREA ADDR

VSAM IDUMP
is a dump identification message.

24-character symptom string
identifies error codes, the location of the error, and the module that detected the
error. For information on how to interpret this character string, see VSE/VSAM
Programmer’s Reference.

MM/DD/YY
is the date when VSAM detected the error.

HH:MM:SS
is the time of day when VSAM detected the error.

SAVEAREA ADDR
contains the address of the save area that shows what each register contained
when VSAM discovered the error. Ignore the first 16 bytes of this save area,
and look for the register contents beginning at the 17th byte. You will find the
contents of all 16 registers in the following order: registers 9—15, registers 0-8.

Creating GCS Dumps

GCS uses the CP VMDUMP command to produce dumps of virtual machines.
Dumps are always sent to a virtual reader.

Dumps are produced several ways:

* By using the GDUMP command

* From an application using the SDUMP, SDUMPX macro or ABEND macro

* By entering the CP command, SYSTEM RESTART

» After an abnormal end of the GCS supervisor or an abnormal termination of a
program.
All GCS dumps follow the same rules for authorization. If the receiver of the
dump is not authorized, he receives only key 14 and other non-fetch-protected
storage. If the receiver is authorized, all areas of the virtual machine and any
saved segments can be dumped.

* By using the VMDUMP command.

If the receiver is authorized, all areas of the virtual machine and any saved
segments can be dumped.

The GDUMP Command

GDUMP is a GCS command. When you enter the GDUMP command, a “snapshot”
of the virtual machine’s storage is taken. You can spool the dump to a common
dump receiver’s virtual reader, to a specified user’s virtual reader, or to the issuer’s
virtual reader. You can dump specific ranges of storage by specifying it on the
GDUMP command. For further information on GDUMP and dump authorization, see
the [z/VM: Group Control Systen] book.

130 z/vM: Diagnosis Guide

Debugging GCS

The SDUMP Macro

SDUMP is a macro that you can start during GCS processing. It takes a dump of
the GCS system and continues processing. The resulting dump contains the
storage of the issuer’s virtual machine. SDUMP is spooled to a common dump
receiver or to the issuer’s virtual reader. All or portions of storage may be requested
when using the SDUMP macro. A dump will not be taken if SET DUMP OFF has
been issued. For further information on SDUMP, see the |z/VM: Group Control

book.
The SDUMPX Macro

Use the SDUMPX macro when you are running an XC virtual machine and wish to
dump part or all of a data space that you are accessing. For further information on
SDUMPX, see the |z/VM: Group Control System|book.

The ABEND DUMP Macro

Conditions can occur within a program that may force an abnormal ending (abend)
and cause the dumping of the system registers and storage. When this happens, an
abend dump is produced. In addition to the “forced abend”, a program may also
choose to generate an abend condition by issuing its own ABEND MACRO. The
dump contains the entire virtual machine as well as any discontiguous shared
segments (shared segments linked to your GCS system, but not within the bounds
of your virtual machine). GCS uses this facility just as CMS and CP do, except that
the dump is spooled to the common dump receiver if one was specified at GCS
build time (in the GROUP EXEC), rather than the user’s virtual reader.

Note: The DUMP operand is overridden by the SET DUMP command. SET DUMP
ON implies that the dump is always issued. SET DUMP OFF implies the
dump is not issued. If you enter SET DUMP DEFAULT, the DUMP operand
from ABEND takes preference.

For further information on abend dumps, see [‘Processing Abends” on page 135

The SYSTEM RESTART Command

GCS has the capability to dump a virtual machine’s storage and any saved
segments when that virtual machine issues the CP command SYSTEM RESTART.
This is helpful when you cannot use the GDUMP command, for example, if you
have a GCS disabled loop and enter #cp system restart.

As with other GCS dumps, the resulting dump from the SYSTEM RESTART is in
VMDUMP format and is spooled to a common dump receiver. If you don’t have a
common dump receiver, the data goes to the machine that issued it. A SYSTEM
RESTART dump follows the same rules of authorization as other GCS dumps,
when determining what storage to dump.

The VMDUMP Command

VMDUMP is issued in GCS in the same manner as in CMS. When you enter the
VMDUMP command, a snapshot of the system is taken. This snapshot is then
spooled to your virtual reader. For further information on the VMDUMP command,
see the [z/VM: CP Commands and Utilities Reference]

Preserving Common Storage

To produce a dump requested by one of these functions, GCS calls CP and
requests a dump. While it performs the dump, CP continues dispatching other

Chapter 10. Debugging GCS 131

Debugging GCS

machines in the virtual machine group. This poses a problem if those members go
on to change common storage as it is being dumped.

To preserve common storage contents until the dump finishes, the GCS supervisor
acquires the common storage lock. This prevents other machines from acquiring the
lock during the dump. If all authorized machines test the common lock before trying
to change common storage, they will be effectively suspended until the dump
finishes. The only common storage that might change is that obtained by other
machines before the dump began.

If the SET DUMPLOCK OFF command was entered, the common storage lock is
not held while GCS is dumping. Other virtual machines running in the group can
then alter common storage.

Note: The common storage lock gets set on only if your common dump receiver is
an authorized GCS user ID and you are using the SDUMP and GDUMP
functions. It is possible to receive two dumps. An example of this would be if
a user ran out of storage while producing a dump. One dump would be
produced as the user dump, and the second dump would be the supervisor
dump.

How to Find the GCS Virtual Machine That Created a Dump

When you process a GCS dump by the DUMPLOAD utility, the user ID of the virtual
machine where the dump was produced is not kept for use by the Dump Viewing
Facility. Therefore, situations may arise where you have several dumps on the
minidisks and you need to know which virtual machine has created them. Use the
DUMPSCAN DISPLAY 204 subcommand to view the NUCVMID field. NUCVMID is
an 8-byte field that contains the virtual machine user ID, as specified in the CP
directory.

Using the GCS Trace Facilities

The GCS trace is a powerful tool used to help track down the source of a problem.

GCS has two tracing facilities:
* Internal trace (ITRACE)
» External trace (ETRACE).

These tracing facilities record events while GCS is running. You can specify which
events to track on the ITRACE or ETRACE commands. For information on how to
use these commands, see the [z/VM: Group Control System book.

ITRACE

The internal trace facility records specific events as they occur in the GCS system.
Internal tracing of GCS supervisor events is automatically enabled at IPL, but the
user may disable this tracing if so desired. Unauthorized users can disable events
for themselves only if these events have not been enabled for the entire group.

Locating the GCS Internal Trace Table

Because the internal trace table can be in either private or common storage, you
need to determine in which storage the active trace table is located.

132 z/vM: Diagnosis Guide

Debugging GCS

If you are in interactive mode, enter the QUERY TRACETAB command. The
response you receive tells you in which storage location the trace table is now
being maintained.

If you are working from a dump:
Use the load map to locate the address of the GCTGST.
Locate the group flag in the GST at displacement X'14'. If the flag contains:

XXX XXXX trace table is in private storage
XOXX XXXX trace table is in common storage.

In Private Storage

You can locate the internal trace table in private storage by doing the following:
Locate the S| Extension (SIE) address in the NUCON at displacement X'5C4'
Locate the private trace anchor table (TAB) address in SIE at displacement
X'AQ'
The TAB contains the following pointers to the internal trace table when it is in
private storage.

Displacement Field Description

X'10' The starting address of the trace table

X'14' The ending address of the trace table

X'18' The address of the next available trace table
entry

Following is an example for locating the trace table in private storage:

cp d 5C4.4
ROOOOO5C4 00000750
Ready;

cp d 7F0.4
ROOOOO7FO 00002B28
Ready;

cp d 2B38.C
RO0002B38 OOFEOO0O OOFE4000 ©OFE2BCO
Ready;

{———— Next available trace table entry address
Trace table end address
Trace table start address

In Common Storage
You can locate the internal trace table in common storage by doing the following:

Locate the common trace block (CTB) address in NUCON at displacement
X'21C'

The CTB contains the following pointers to the internal trace table when it is in
common storage.

Displacement Field Description

X'00' The starting address of the trace table

X'04' The ending address of the trace table

X'08' The address of the next available trace table
entry

Chapter 10. Debugging GCS 133

Debugging GCS

If these first three fields in the CTB are zero, tracing is being done in private
storage.

Following is an example for locating the trace table in common storage:

cp d 21c.4

RO000021C OO83EB6O

Ready;

cp d 83eb60.c

ROOB3EB6O 0O83FOO0 00843000 00841C60
Ready;

Next available trace table entry address
Trace table end address
Trace table start address

Locating the Last Trace Entry in Storage or in a Dump

To find the last trace entry, use the pointer to the next available trace entry. Trace
entries created by the GCS supervisor are 32 (X'20') or 64 (X'40") bytes long. Trace
entries created by the GTRACE macro have variable lengths (consisting of a fixed
32-byte area and 1 to 256 bytes of data). Trace entries which follow GTRACE
entries are aligned on a 32-byte boundary, and the space between these entries is
filled with binary zeros.

If the trace table does not contain any GTRACE entries, find the last entry by
subtracting 32 (X'20") or 64 (X'40"), depending on the type of supervisor trace entry
(see [Formats of Internal Trace Entries” on page 104)), from the pointer to the next
available trace entry. If the trace table contains GTRACE entries, you have to know
the layout of those trace entries to be able to find the last trace entry.

Using the Trace Table

Each supervisor trace table entry is 32 or 64 bytes long. The first 16 bytes are the
header. The header describes what type of event is being recorded, the time of the
event, and for which virtual machine the event is being recorded. The remaining
bytes contain information unique to the recorded trace event. Trace entries created
by GTRACE macro have variable length. Trace entries which follow GTRACE
entries are aligned on a 32-byte boundary, and the space between these entries is
filled with binary zeros. For further information on trace table entries, see [‘Formats|
fof Internal Trace Entries” on page 104 |

To see which events were being traced for a virtual machine in a dump, look at the
trace anchor block (TAB), as follows:

1. Locate the Sl Extension (SIE) address in the NUCON at X'5C4'
2. Find the TAB address at SIE + X'A0".

The TAB contains the following information:

Displacement Field Description

X'00' The address of the CTB

X'o4' Flags for external tracing
Byte Field Description
TXXX XXXX Dispatcher
X1xx XXXX External interrupts
XX1X XXXX I/0 interrupts
xxx1 xXxxx Program interrupts

134 z/vM: Diagnosis Guide

ETRACE

GTRACE

Debugging GCS

xXxxx 1xxx SVC interrupts
xXxxx x1xx I/0 requests
XXXX Xx1x Signal system service events
XXXX Xxx1 GTRACE events
X'05'
Byte Field Description
1XXX XXXX GETMAIN requests
XTXX XXXX FREEMAIN requests
XX1X XXXX APPC/VM synchronous events
xxx1 1111 Reserved
X'06' Flags for Internal Tracing
Byte Field Description
1111 11xx Reserved
XXXX Xx1x Supervisor events
XXXX Xxx1 GTRACE events

When a tracing flag is on, that event is being traced for the subject virtual machine.

The external trace facility records specific events within a group as they occur in the
GCS system. These events are recorded in one or more system trace files by the
CP TRSOURCE command. This spool file may optionally be a wraparound file. In
order to use the ETRACE facility, a user with VM privilege class C must first enter
the CP TRSOURCE command. After the CP TRSOURCE command is completed,
any user in the group can enter ETRACE to begin tracing in their own virtual
machine, or an authorized user can start ETRACE for the entire group. The data
recorded in the system trace file is for the entire group.

You can use the CP TRACERED utility to format and display CP TRSOURCE trace
information. The formatted information can either be printed out or placed in a CMS
file.

The procedure for setting up and formatting ETRACEs using the CP TRSOURCE
command and CP TRACERED utility are found in [‘External Tracing Facilities” on|

page 121.

Either the ITRACE or ETRACE command must be entered prior to GTRACE if
GTRACE is to work. A GTRACE entry is a special trace entry that can be recorded
either internally or externally. It is started by the GTRACE macro, and records up to
256 bytes of application data for an internal trace record and up to 8K for an
external trace record. For further explanation of the GTRACE macro, see the
|Group Control Syster book.

Processing Abends

Problems occurring in the system may result in abend (abnormal end) processing.
When an abend occurs, an abend completion code is given, an abend work area is
filled in, and a dump is taken if DUMP is specified in the ABEND macro. Internal
abends always specify DUMP. See ['The ABEND DUMP Macro” on page 131| for
information on the precedence of SET DUMP.

Chapter 10. Debugging GCS 135

Debugging GCS

Abend completion codes give the user some idea of why the error occurred and
what part of the system may be responsible for the problem. These codes are
explained in the [zVM: CP Messages and Coded book.

The abend dump contains information that enables the problem to be tracked
further. Using the Dump Viewing Facility REGS command, the contents of the
registers at the time the abend occurred can be displayed. The internal trace table
and system control blocks can also be displayed. They aid in problem determination
and debugging.

The abend work area is used during abend processing to save information about
the system at the time of the abend. It contains information such as the registers,
the PSW, and the pointer to the next available trace table entry at the time abend
occurred. The abend work area address is located at offset X'298' in NUCON.

The Abend Work Area

The abend work area is used during abend processing to save information about
the system at the time of the abend.

The abend work area contains the following information:

* The general purpose registers and access registers at the time of error
* The PSW at the time of error

* An abend completion code

* A reason code (if applicable).

It also contains the address of the next available trace table entry at the time the
abend occurred.

The trace table entries before this address show the events that preceded the error.

Note: It is possible that an abend can be issued while another abend is being
processed. In this case, an abend recursion message is issued.

The recursive abend appears in the trace table. The trace table has recorded the
events for both abends.

The abend work area contains information from the original abend, and only the
original abend state block (STBLK) (type SVC) remains on the state block chain
(see[“State Block” on page 141|for information about state blocks).

For abends that result from a program check, the abend work area contains the
registers and PSW at the time of the program check.

The field NUCABW in the NUCON (at displacement X'298') points to the abend
work area.

The abend work area contains the following important fields:

Displacement Field Description

X'00' to X'3F' Registers at the time of failure (0 to 15)
X'40' PSW at the time of failure

X'48' Abend code at the time of failure (full word)
X'4C' Reason code at the time of failure (full word)
X'D8' Trace pointer at abend time (full word)

136 z/vM: Diagnosis Guide

Debugging GCS

X'DC' to X'11B' Access Registers at the time of failure (0 to 15)

Program Checks

When a program check occurs, an abend results. The abend work area contains
the registers and PSW at the time of the program check.

Processing GCS Dumps with the Dump Viewing Facility

The Dump Viewing Facility is a facility that lets you view VM dumps. You should be
familiar with the facility and how it works before using the Dump Viewing Facility for
GCS dumps.

All dumps taken in GCS are in VMDUMP format and can be viewed using the
Dump Viewing Facility.

The Dump Viewing Facility component of z/VM has some DUMPSCAN
subcommands you can use to display certain areas of a GCS dump. You must have
the GCS nucleus load map in order to use the DUMPSCAN subcommands that are
relevant for GCS dumps.

These DUMPSCAN subcommands are:

* DUMPID—displays the dump identifier specified in the SDUMP or SDUMPX
commands

* lUCV—displays the entire IUCV path table

« TACTIVE—displays information about active programs on a specified task

» TLOADL—displays the load list for a specified task

+ TSAB—displays the task storage anchor block for a specified task

* VMLOADL—displays information about all programs loaded in virtual storage.

You can use other Dump Viewing Facility commands with a GCS dump to aid in
debugging. Any Dump Viewing Facility command or subcommand that is valid for
VM dumps can help with a GCS dump. The PRTDUMP command and the
DUMPSCAN subcommands of CHAIN, DISPLAY, and LOCATE are most helpful
when debugging with the Dump Viewing Facility. For more information on these
commands, see the [z/VM: Dump Viewing Facility| book.

Information Used by the Dump Viewing Facility
The Dump Viewing Facility uses general purpose control blocks.

For more information on abend work areas, see [The Abend Work Area” on page|
Program management control blocks are displayed by DUMPSCAN
subcommands. Those fields are:

» From the virtual machine load list (displayed by the VMLOADL subcommand)
— The major NUCCBLK address
— The module name (major NUCCBLK)
— The entry point address (major NUCCBLK)
— The module size (major NUCCBLK)
— The module load address (major NUCCBLK)
— The minor NUCCBLK address
— The entry point name (minor NUCCBLK) and
— The type of minor NUCCBLK (ALIAS or IDENTIFY).

Chapter 10. Debugging GCS 137

Debugging GCS

* From the task load list (displayed by the TLOADL subcommand)
— The task ID
— The task block address
— The load block address
— The module name and
— The load count.

For more information on program management, see |“Program Management” on|

Task management control blocks are displayed by the DUMPSCAN TACTIVE
subcommand. The fields are:

* The task ID (TIDTB)

* The task block address (TIDTB)

* The task completion code (TBK)

* The state block address (TBK and STBK)

* The state block type (STBK)

* The state block module name (STBK)

* The state block module entry point address (STBK) and
* The state block general registers (STBK).

For more information on task management, see|‘Task Management” on page 140.|

Storage management control blocks are displayed by the DUMPSCAN TSAB

subcommand. The fields are:

» The pointer to the TSABE (TSAB extension), which contains a pointer for each
grain of storage to a list of task storage header blocks that describe the storage
owned by a task (for terminology see [‘Storage Management” on page 153).

* A 256-bit map of subpools owned by a task (TSAB).

In addition, the TSAB subcommand also displays for each task:
* The task ID (TBK)

* The task block address (TBK)

» The task storage anchor block address (TBK).

For more information on task management, see|[“Task Management” on page 140.|

IUCV management control blocks are displayed by the DUMPSCAN IUCV
subcommand. The fields are:

* The user ID block (UIDB) address (IUCPT)
* The exit address (IUCPT)

* The user word (IUCPT)

* The task block address (IUCPT) and

* Flags of the path status (IUCPT).

* The Dump identifier, if present

For more information on IUCV, see |“The Path ID Table (IUCPT)” on page 152.|

138 z/vM: Diagnosis Guide

Debugging GCS

NUCON and SIE

In GCS, the NUCON control block and the SIE state descriptor block are located in
the first virtual page of GCS. Each GCS virtual machine, when logged on, has its
own NUCON and SIE.

There may be times when diagnosing problems on a running system may be
preferable to looking at a dump. In these cases the QUERY ADDRESS command
can often make chaining through control blocks and data areas easier. Refer to the
lz/VM: Group Control Systerr| book for more information on this command.

The data contained in these two blocks is not shared, as the various fields in the
NUCON and SIE relate to the operation of a specific user rather than the group.

The NUCON contains many important fields describing the current status of GCS in
a GCS virtual machine. Examples of such fields are:

* The various old and new program status words (PSWSs)

* The I/O subsystem identification word (SID) (X'B8' in the NUCON)
* The I/O interrupt parameter (X'BC' in the NUCON)

* The virtual machine’s user ID (X'204' in the NUCON)

* The task ID of the currently active task (X'212' in the NUCON)

* A pointer to a string of the four anchors of common storage: low common start,
low common length, high common start, and high common length.

In addition, other important GCS control blocks are pointed to by NUCON fields.
Examples of those control blocks are:

» The task block of the currently active task (pointed to from X'214' in the NUCON)
* The common trace block (pointed to from X'21C' in the NUCON)
* The SIE (pointed to from X'5C4' in the NUCON)

» Various work areas (for example, the abend work area, pointed to from X'298' in
the NUCON).

The SIE is an extension of the NUCON and contains further pointers to other
control blocks. Some pointers, useful when performing diagnostics, that you can
find in the SIE are:

* The address of the task ID table (X'10" in the SIE)

* The address of the asynchronous exit queue (X'18' in the SIE)

* The address of the virtual machine control block (VMCB) (X'2C' in the SIE)

» The address of the storage management anchor block (SMAB) (X'40' in the SIE).

Virtual Machine Control Block

When a virtual machine IPLs GCS, a VMCB is maintained for that machine. There
are as many VMCBs as the maximum number of virtual machines that can join the
GCS group (the maximum number is specified at GCS generation time).

A VMCB is 24 bytes long and, among other information, contains:
» The virtual machine user ID (the first 8 bytes of the VMCB)
» The machine ID (the 2 bytes at displacement X'0A' of the VMCB).

For other information on VMCBs, see [*'VMCB—Virtual Machine Control Block” on

Chapter 10. Debugging GCS 139

Debugging GCS

How to Determine the User ID That Created a Trace Entry

Each entry in the GCS internal trace table has a reference to the machine ID of the
virtual machine that created the entry. The machine ID is a binary number assigned
to the virtual machine when GCS is IPLed in the virtual machine.

To determine the user ID that created a trace entry, you have to translate the
machine ID to its corresponding user ID. In other words, you have to access the
VMCBs of the GCS virtual machine, because the VMCB is the place where user ID
and machine ID are correlated.

To find the VMCBs of the virtual machines in a GCS group, use the following
procedure:

1. Locate the Sl Extension (SIE) address in the NUCON at X'5C4'
2. Find the address of the VMCB array at SIE + X'28'.

How to Locate the GCS Common Lock

The SIELKCOM field in the SIE (at displacement X'20') points to the common lock.
The common lock is a word-long field in common storage that contains the machine
ID (2 bytes) and the task ID (2 bytes) that are currently holding the common lock. If
the common lock is free, it contains binary zeros.

The GCS QUERY LOCK command can be used to display the status of the
common lock. A query on the lock is sufficient to determine if the lock has changed
since the last query.

When you are recreating a problem and you want to know when the common lock
is being acquired, use the CP TRACE command. This can be done by entering a
CP TRACE on a store into the common lock word, and when CP TRACE stops the
virtual machine you can display the machine and task ID values.

If at that time you take a dump of the virtual machine that has acquired the lock,
you will be able to use DUMPSCAN subcommands to interrogate the task in
question and determine what module is issuing the request for the lock.

An alternative could be to use the CP TRACE command to display stores in the
SVC OLD PSW (at displacement X'20' in the NUCON). This would be an SVC 203
(X'CB") for the LOCKWD macro.

The mapping of the NUCON in GCS is different from that in CMS. The SIE has also
been added as an extension of the NUCON. Both contain important information for
the debugging of GCS. For more information on the NUCON and SIE Extension
mappings and field descriptions, see|“NUCON—GCS Nucleus Constant Area” on|
lpage 199|and [*SIE—NUCON Extension” on page 203

Task Management

Task Block

The task block (TBK) gives you a good idea of the state of a task. The task block
for a task is pointed to from the task ID table and contains information such as:

» A pointer to a list of state blocks describing the programs that have been running
under the task

140 z/VM: Diagnosis Guide

State Block

Debugging GCS

» A pointer to a list of load blocks describing the programs that the task has loaded
in storage through a LOAD SVC (SVC 8 or SVC 122) or through the GCS
LOADCMD command

* The value of the registers and PSW when the task is dispatched, if the task is
dispatchable

» The address of the task block of the owning task
* The task ID and task priority.

For information on the task block mapping and field descriptions, see|“TBK—Task
Block” on page 205 .|

GCS uses state blocks (STBLKSs) to keep track of a particular task’s processing
activity.

There is a state block for each active program in the task. The primary purpose of
the state block is to save and restore PSWs and other processing status in
particular steps in a task.

The chain of state blocks for a task can be seen as an active stack:

* When the task is created, a state block for that task is also created. This state
block is always called INIT.

* When certain events occur in the task, GCS adds new state blocks to the top of
the stack. GCS sets a flag byte (at displacement X'24") in the state blocks to
indicate what type of event has occurred:

— If the task has issued a LINK, SYNCH, XCTL, or ATTACH macro, the flags
contain X'80', and the state block is referred to as a LINK block.

Note: If the task has issued a SYNCH macro with RESTORE=YES, the flags
contain X'90". The RESTORE=YES operand tells GCS that the general
registers 2 through 13 are to be restored when control is passed back
to the calling program.

— If the task has issued an SVC instruction, the flags contain X'40', and the
state block is referred to as an SVC block.

— If an asynchronous exit has been scheduled for the task, the flags contain
X'20', and the state block is referred to as an AEB block.

In this case, other flags (at displacement X'25') in the AEB block, indicate
whether the asynchronous exit was scheduled as a result of a SCHEDEX
macro, an /O interrupt from a general 1/O device, or a timer interrupt.

* When a program represented by a state block ends, the corresponding state
block is removed from the top of the stack.

The preceding discussion leads to the conclusion that the analysis of the existing
state block chain (stack) for a task gives an important idea of the events (LINK,
SVC, or AEB) that are still being handled, and the order they have occurred.

The state block chain is pointed to from the task block with the most recently added
state block at the beginning of the chain.

The PSW and the general registers in a state block refer to the previous program
running under the state block. The PSW for a running program is in the task block.

Chapter 10. Debugging GCS 141

Debugging GCS

For more information on the state block mapping and field descriptions, see
[‘'STBLK—State Block” on page 207.|

WAIT COUNT Field in a State Block

An important field in a state block is WAIT COUNT. Use this field (STBWAIT at
displacement X'26' in the state block) to determine if a task is waiting.

If the contents of the field are:
Value Meaning
0 The task is not in a wait state.

1 The task is in a wait state.

Note that the STBWAIT field is maintained by GCS only if the task has used the
WAIT SVC (SVC 1) to enter a wait state.

By looking into the instructions that precede the SVC instruction, you probably will
find a LOAD (L) or a LOAD ADDRESS (LA) instruction that loads in Register 1 the
address of the ECB (Event Control Block) (or ECBLIST) associated with the wait.
Use this to determine what the task is waiting for.

Note: If the task has entered a wait state by other means (for example, by a LOAD
PSW instruction, if the task was running in supervisor state) this is not
reflected in the STBWAIT field.

LINK Block

A LINK block is a type of state block that represents a module to which control was
passed when the task issued a LINK, SYNCH, XCTL, or ATTACH macro.

When that module returns control to the program that issued the macro, the LINK
block is removed from the state block chain of the task.

The caller’s registers are not moved into a LINK block unless it is for a SYNCH
macro with RESTORE=YES.

The second word of the PSW in the LINK block (field STBPSW) points to the
address following the SVC instruction. Use this address to determine the module
that has issued the ATTACH, LINK, SYNCH, or XCTL macro.

SVC Block

An SVC block is a type of state block that represents a module to which control
was passed when the task issued an SVC instruction.

The second word of the PSW in the SVC block (field STBPSW) points to the
address following the SVC instruction. Use this address to determine the module
that has issued the SVC instruction.

Asynchronous Exit Block (AEB)

The AEB is a type of state block that represents an asynchronous exit that has
been scheduled to be run under a task.

Certain flags in an AEB indicate whether the asynchronous exit has been scheduled
by general I/O, SCHEDEX, or TIMER functions.

142 z/vM: Diagnosis Guide

Debugging GCS

When an asynchronous exit is to be scheduled to run under a task, GCS gets an
AEB from storage, fills in the appropriate fields—such as register values, task block
address the AEB is to run under, and the entry point of the exit routine—and
queues that AEB on the SIEAEQ. It is then dispatched from the SIEAEQ to the
appropriate task state block chain.

Asynchronous exits resulting from SCHEDEX functions have their AEB blocks in
two additional chains:

SIEAEQ
Is a field in the GCS SIE control block that contains a pointer to a queue of
AEBs (located in private storage), to run in a virtual machine. This queue is
used as follows:

1. When a task, A, in a virtual machine wants to schedule an exit to run in
another task, B, task A issues the GCS SCHEDEX macro, specifying
the task ID of task B and the exit routine address.

2. GCS SCHEDEX processing, running for the “SCHEDEXing” task, gets
an AEB, fills in the appropriate fields, and queues the AEB in the
SIEAEQ.

3. When the GCS dispatcher gets its turn to run, before dispatching any
tasks, it checks if there are any AEBs queued in the SIEAEQ.

If so, it takes the AEB off the SIEAEQ and queues it at the beginning of
the task B state block chain.

4. When task B eventually gets dispatched, the exit routine runs as the
currently active state block.

VMCSCHDX
Is a field in the virtual machine control block (VMCB) that contains a pointer
to a queue of AEBs (located in common storage) used in cross-machine
exit functions. The pointer to VMCB is in the NUCON (SIE at displacement
X'28"). For more information on VMCB, see ['VMCB—Virtual Machine]
[Control Block” on page 212] An example of how this queue is used is:

1. When a task, A, in the virtual machine A wants to schedule an exit
routine to run in a task B in the virtual machine B, task A issues the
GCS SCHEDEX macro, specifying the machine ID of virtual machine B,
the task ID of task B, and the exit routine address.

2. GCS SCHEDEX processing, running for the SCHEDEX task, gets an
AEB, fills in the appropriate fields and, using Compare/Swap logic,
queues the AEB on the VMCSCHDX queue associated with the target
virtual machine (B).

3. After that, GCS running in virtual machine A issues an IUCV message
to virtual machine B that informs it about the exit routine to be
scheduled.

4. Virtual machine B is interrupted by the IUCV message (external
interrupt).

5. The IUCV interrupt handler in GCS calls the GCS scheduling routines
GCTSDT and GCTSDX.

These routines find the VMCB of the virtual machine B, dequeue any
AEBs queued on the VMCSCHDX queue for this virtual machine, and
queue them in the SIEAEQ queue.

6. Finally, when the dispatcher gets control in virtual machine B, before
dispatching any tasks, it checks if there are any AEBs queued in the
SIEAEQ.

Chapter 10. Debugging GCS 143

Debugging GCS

If so, it takes the AEB off the SIEAEQ and queues it at the beginning of
task B State block chain.

7. When task B eventually gets dispatched, the exit routine runs as the
currently active state block.

The Dispatch Queue

Because GCS is a multitasking environment, tasks are performed concurrently. The
dispatcher is called each time a new task can be run. System services, such as
interrupts and service calls (SVCs), pass control to the GCS dispatcher.

Within a virtual machine there are multiple tasks to perform. Each task has a priority
associated with it. The task with the highest priority is given control to run first.

To keep track of tasks and their priorities, a dispatch queue is set up which chains
the tasks (through task blocks) by priority. The task with the highest priority is
placed at the beginning of the chain. Each priority level contains tasks of equal
priority. Each level is capable of containing more then one task, but each task on
that level is of the same priority.

If a task has been running an extended amount of time, the dispatcher switches to
another task of equal priority that is waiting in the dispatch queue. This only
happens if there is a task of equal or higher priority waiting to be processed.

When the dispatcher is ready to dispatch a task, it first looks at the tasks with the
highest priority level. These tasks are at the beginning of the dispatch queue. If the
first task on that level is ready to run, it is given control. If not, the next task (if any)
on the same priority level is checked.

This is continued until a task is found ready to run. If no tasks on that priority level
are ready to run, the next priority level is checked until a ready to run task is found.

To find and follow the dispatch queue:

1. Locate the Sl extension (SIE) address in the NUCON at X'5C4'.

2. Find the address of the first task block (TBK) on the dispatch queue at SIE +
X'14',

3. TBK + X'00' is the address of the task block on the dispatch queue of higher
priority than this task block.

4. TBK + X'04' is the address of the task block on the dispatch queue of lower
priority than this task block.

5. TBK + X'08' is the address of the next task block of the same priority.
6. TBK + X'C' is the address of the previous task block of the same priority.

All of the task blocks on this chain are of the same priority and are dispatched
in turn.

Using the steps listed, the whole dispatch queue can be traversed and each task
waiting to be run can be found.

For more information on the Dump Viewing Facility and task management control
blocks, see|‘Processing GCS Dumps with the Dump Viewing Facility” on page 137

144 z/vM: Diagnosis Guide

Debugging GCS

How to Find the Task ID Table

The task ID table lists all the tasks in the virtual machine. All valid task blocks (TBK)
are anchored in the task ID table (TIDTB). This table can be used to find all tasks
or a specific task by its ID. The make-up of the task ID table is shown in[Figure 10}

To find the task ID table (TIDTB):
* Locate the Sl extension (SIE) address in the NUCON at X'5C4".
» Find the TIDTB address at SIE + X'10".

* The first 8 bytes in the table are table control data and do not point to a task
block. Instead it contains a table label and a pointer to the next task ID table.

¢ The table entries start at the TIDTB address + X'08'.
* Each TIDTB has 255 entries.

Each TIDTB entry describes a task:

» Each entry is 8 bytes long

» The first halfword (the first 2 bytes) in an entry contains the task 1D

» The following halfword (the second 2 bytes) is unused

* The next fullword (the last 4 bytes) contains the address of the task block for that

task.
0 2 4 8
TIDTB + X'0' label XXXX next TIDTB
TIDTB + X'8' task id XXXX task block addr
L[] L] L[]
task id XXXX task block addr

Figure 10. The Task ID Table (TIDTB)

How to Find Which Task Is Running
In NUCON there is a field that contains the task ID of the task currently running.
Use this task ID and find its entry in the task ID table. In NUCON there also is a
field that points directly to the task block (TBK) of the task currently running. This
address and the address of the task block in the TIDTB for the current task ID
should be the same.
* Locate the active TBK address in the NUCON at X'214".

* Locate the address of the state block of the last active module at TBK + X'10'.

See [[TBK—Task Block” on page 205|and ['STBLK—State Block” on page 207] for
important fields.

If you are using the Dump Viewing Facility, the following procedure using
DUMPSCAN subcommands yield similar information in formatted form:

» Enter DISPLAY X'212' to get the current task ID.
» Enter TACTIVE using the task ID just found.

Chapter 10. Debugging GCS 145

Debugging GCS

* The display that results includes the completion code, the program name, and
the register contents associated with the state block.

If an abend occurs with a dump while GCS is processing an 1/O interrupt or an
external interrupt, the pointer to the active task will point to a special task block
located in low storage. It will not be on any task block chain. The X'02' flag at
displacement X'CE' will be on to signify that is the special interrupt task block. See
displacement X'CE' and its flag bytes and descriptions page

Tracing Task and Program Management

ITRACE and ETRACE facilities record supervisor events and the GTRACE macro
records user events, as these events occur in GCS. Included in these event
recordings are the dispatcher and program interrupt trace table entries. These
entries can be of use when debugging potential task and program management
problems.

» The dispatcher trace entry (X'01' type) is made whenever a task is dispatched. If
an active task is being redispatched, no trace table entry is created. The entry
includes the task ID, task block address, and PSW.

* The program interrupt entry (X'04' type) is made each time a program interrupt
occurs. It includes such information as the task ID and program old PSW.

» Each GTRACE entry in the trace table includes the task ID of the task that
issued the GTRACE.

Program Management

When you are analyzing a dump of a GCS virtual machine, there are some
important control blocks that give you information about the programs loaded in
storage.

A program can use GCS program management macros to dynamically load and run
program modules by name. GCS macros that may cause GCS to load a module in
storage are:

LOAD Loads a module into storage. Control is not passed to the loaded
module.

LINK Loads a module and calls it. When the LINKed module returns,
control is also returned to the module that issued the LINK.

XCTL Loads a module and transfers control to it. When the XCTLed

module returns, control is not returned to the module that issued
the XCTL. Instead, control is passed to the module that called the
issuer of the XCTL macro (if there is one) or to GCS.

The above GCS macros refer to a module by its entry point name (or ALIAS entry
point name as defined in the LOADLIB libraries).

When looking for the entry point, GCS searches the following items in sequence:

1. The virtual machine private storage, because the module associated with the
entry point name may already be loaded.

2. Any saved segment directories that may have been created with the GCS
CONTENTS macro, which sets up a directory for the entry points in that
segment.

146 z/vM: Diagnosis Guide

Debugging GCS

For example, the VTAM saved segment has a directory built with the
CONTENTS macro. Therefore, you are able to LINK, LOAD, and XCTL to the
VTAM entry points.

The VSAM saved segment (used by NetView®) does not have a built-in
directory. Therefore, you are not able to LINK, LOAD, and XCTL to the VSAM
entry points.

3. The directories of any load libraries that may have been defined for the
virtual machine through the GCS GLOBAL LOADLIB command.

If the module cannot be found in storage and it exists in a load library, GCS loads

the module into storage. GCS keeps track of modules loaded in storage through

two lists:

« The virtual machine load list, which describes all the modules that have been
loaded into storage.

* The task load list, which associates loaded modules with the task that caused

the module to be loaded. Note that only modules for which the task has issued a
LOAD SVC are referred to in the task load list.

Note: In addition to this list, GCS also creates a state block for a task each time
the task issues the ATTACH, LINK, SYNCH, or XCTL macro. State blocks
are discussed in [‘State Block” on page 141

In addition, other GCS macros are used with the program management functions:

IDENTIFY
Allows dynamic creation of a new entry point for a loaded module.

SYNCH
Calls a loaded module.

DELETE
Removes a module from storage.

BLDL Requests GCS to locate a module in a GLOBALed LOADLIB and to
retrieve the module size and characteristics.

Task Load List

The task load list is made up of load blocks representing programs that a task has
requested through the LOAD macro. There may be a load list for each task. The
load list consists of load blocks chained together and pointed to by the task block
(TBK + X'14).

The load block (LDBLK) contains the following information:

Displacement Field Description
X'00' The program name
X'08' The address of next load block on chain
X'oC' The address of previous load block on chain
X'10' The address of NUCCBLK for this load block
X'14' The load count (2 bytes)
X'16' Flag

Byte Field Description

1xxx Load issued by LOADCMD
X117 RMODE and AMODE

Chapter 10. Debugging GCS 147

Debugging GCS

You may enter a LOAD for a program more than once. The load count keeps track
of the number of LOADs issued for a program by a particular task. The count
ensures that the storage used to load the program is not freed while being used by
the program. The LOADCMD flag is used ensuring that the program storage is not
freed at command termination. For more information on the LOADCMD command,
see 'LOADCMD Command” on page 171,

Virtual Machine Load List

When GCS loads a program into storage, it builds a major NUCCBLK that contains
information about the program that was loaded. When a task issues a LOAD, LINK
or XCTL macro for a module that exists in the shared segment directory, GCS
builds a major NUCCBLK. If the loaded entry point is an ALIAS entry point, or if an
IDENTIFY macro is issued for a loaded program, GCS builds a minor NUCCBLK.
The minor NUCCBLKSs are chained together and pointed to by the corresponding
major NUCCBLK. When the major NUCCBLK is deleted, the minor NUCCBLKSs
associated with it are also deleted.

The list of major NUCCBLKSs is pointed to from the field NUCCBLKS in the NUCON
(at displacement X'5E0"). The NUCCBLKSs contain the following information:

Displacement Field Description

X'00' The program/alias/identify name

X'08' The next NUCCBLK

X'oC' The previous NUCCBLK address for the major
NUCCBLK
or major NUCCBLK address for the minor
NUCCBLK

X'10' The entry point address

X'14' Flags

X'16' The use count for the major NUCCBLK

X'18' Key

X'19' AMODE and RMODE from the LOADLIB
X'10' RMODE ANY
X'03' AMODE ANY
X'02' AMODE 31
X'01' AMODE 24

(Major NUCCBLK only)

X'20' The program start address or zero

X'24' The program size or zero

X'28' The alias / minor NUCCBLK address

The above maps both a major and a minor NUCCBLK. The major NUCCBLK is
larger with the additional fields at the end of the block. The program start address
and size will be zero if the program resides in common storage or a shared
segment. The KEY is filled in only for a major NUCCBLK and is the first bits in the
field.

The FLAGS field is 2 bytes long and is used as follows:

Byte Field Description

First Byte:

1XXX XXXX A major NUCCBLK

X1XX XXXX An alias minor NUCCBLK
XX1X XXXX An identify minor NUCCBLK

148 z/vM: Diagnosis Guide

Debugging GCS

Second Byte: (Only used in the major NUCCBLK)

1XXX XXXX Reentrant

XTXX XXXX Reusable

XX1X XXXX A reusable module and currently in use

xxx1 Xxxx The module is executable

xxxx 1xxx In common storage or shared segment

XXXX X1XX The module is non-reusable and has been used

How to Find Where a Program Is Loaded

Depending on what you know about a program, you can use one of the following
methods to find where the program is loaded and other information about the
program.

If the program you are looking for is running in the current task:

1.

Using the procedure given in|“How to Find Which Task Is Running” on page|
find the task block (TBK) for the task ID for the program.

After the task block is located, locate the active state stack pointer at TBK +
X'10'. This points to the first state block in a chain.

Locate the program name in the state block (STB) at X'00'. The program
name may be the name of an ALIAS or IDENTIFY as well as the main
program itself.

If this is not the name of the program you are looking for, follow the state
block chain to the next state block. Locate the chain pointer at X'10" in STB.

If the program name is ‘INIT ’ or the chain pointer is zero, you have reached
the end of the chain. The program being searched for may not be running
under this task, or was not called by the program management SVC macros.

When the state block for the program is found, locate the address of the
NUCCBLK at X'1C" in STB.

The NUCCBLK contains information about the program, such as its name,
entry point address, where it is loaded, and more.

If you only wish to know the entry point address for the program, it can be
found in the state block at STB + X'20'.

If you know that the program has been loaded using the LOAD macro, and that
it has been debugged using the Dump Viewing Facility, you can use the
following method to find where the program is loaded.

Enter the TLOADL subcommand of DUMPSCAN to display the NUCCBLKs.

The resulting display includes the load blocks for the tasks specified when
issuing the TLOADL subcommand. Each load block contains the program
name and the address of the NUCCBLK. The NUCCBLK contains the
address of the loaded program. For more information on NUCCBLK and load
blocks see [‘Task Load List” on page 147|and [‘Virtual Machine Load List” on|

|page 148.|

If the following are true:

You have the program name
The program has been debugged using the Dump Viewing Facility
The program has not been loaded by using the LOAD SVC.

You can use the following method to find where the program is loaded:

Enter the VMLOADL subcommand of DUMPSCAN to display the NUCCBLKSs.

The resulting display includes the major NUCCBLKs and minor NUCCBLKs.
The major control blocks represent the module itself, and the minors map

Chapter 10. Debugging GCS 149

Debugging GCS

IDENTIFY or ALIAS entry points. The module name and address are found in
the major NUCCBLK, and the ALIAS or IDENTIFY entry points are found in
the minor NUCCBLK.

* The NUCCBLK addresses are also given in case you wish to display the
NUCCBLK in storage for more information about the program.

4. If you have the program name and the program is not running on the active task
or you are not debugging in the Dump Viewing Facility, you can follow the chain
of NUCCBLKs in the following method:

« Display the NUCCBLK block address at X'5E0' in the NUCON.

* Locate the program name at X'00' in the NUCCBLK. If this is not the program
name, follow the major NUCCBLK chain to the next NUCCBLK. Locate the
chain pointer at X'08' in the NUCCBLK.

* If the program name may be an ALIAS or IDENTIFY, search through the
minor NUCCBLKSs before going to the next major NUCCBLK. The pointer to
the first minor NUCCBLK is located at major NUCCBLK + X'28'. In the minor
NUCCBLK, the chain pointer for minor NUCCBLKSs is located at minor
NUCCBLK + X'08'. A zero in this field indicates the end of the chain.

» After the NUCCBLK for the program is found, you can use the information in
the NUCCBLK to find out more about the program—the entry point address,
where it is loaded, or its size, for example.

GCS Load Error

If your job abends with an abend code of 106 and a reason code of 030B in
register 15 when you are loading a module, the GCS abend was caused by a disk
I/O error. The reason for the disk I/O error can be found in the ERRCODE field of
the DIODA.

To locate the ERRCODE field:
* Locate the address of the DIODA (NUCDIODA) at X'67C' in the NUCON
+ ERRCODE is at displacement X'FF' into the DIODA.

IUCV

Note: In the IUCV section, when the word user appears, it refers to any supervisor
or problem program.

GCS supports communication within a virtual machine or between any two virtual
machines by using IUCV. Routines running within a task communicate through
IUCV with one of the following:

» Other routines in the same machine (same task or different task)
* Routines in other virtual machines
 CP.

When communication is set up through IUCV, the user is assigned a linkage for
communication called a path. A path is established when the source communicator
calls the [IUCV CONNECT function using the IUCVCOM macro, and the target
communicator calls the IUCV ACCEPT function, again using the IUCVCOM macro.
Both the source and target communicators must be defined in the GCS IUCV
environment for a path to be established between them. That is, each must issue
an IUCVINI SET macro function first.

150 z/VvM: Diagnosis Guide

Debugging GCS

A single communicator can have multiple paths defined at a time. When an I[UCVINI
SET macro is issued to admit a user into the IUCV environment, an authorized user
may make himself privileged, using the PRIV=YES parameter if the user is running
in supervisor state. This lets the task communicate on a path using IUCV directly,
rather than through the GCS IUCV support.

For more information on IUCV, see the |z/VM: CMS Application Development Guidei
for Assembleif book. GCS IUCV support is further discussed in the |£/VM: Groug
Control Systerm book.

Debugging Applications

Tracing IUCV

When IUCV problems are first suspected, you should ensure that the application or
program running is using IUCV correctly and that the parameter lists are set up
correctly. TRACE stops should be set after IUCV macros are issued within a
program or application. After the IUCV function has completed, check the return
code in register 15 and any other information that is returned in the CP IUCV
parameter list. If the return code in register 15 is over 1000 (decimal), the error
occurred while the IUCV function was being processed by CP. The IPRCODE field
in the CP IUCV parameter list indicates the cause of the error.

IUCV can be traced through the trace facility. Both CP and GCS keep track of IUCV
with trace table entries. CP trace makes an entry into the CP trace table for each
IUCV function that it processes. ITRACE and ETRACE make IUCV trace table
entries each time an IUCV SVC or external interrupt occurs for GCS. For more
information on GCS Trace facilities see [‘Using the GCS Trace Facilities” on page|

The IUCV Anchor Block (IUCBK)

The IUCV anchor block (IUCBK) contains general information about the GCS IUCV
environment. It is pointed to from the SIE at SIE + X'B8'.

The IUCV anchor block contains the following among other information:

Disp Label Field Description

X'00' IUCCBFAD Address of control external interrupt buffer (EIB)

X'04' IUCEIBAD Address of application external interrupt buffer

X'08' IUCVIDAN Address of user ID block (IUCID) chain

X'oC' IUCPRMAD Address of internal copy of IUCV parameter list

X'10' IUCVPTAD Address of path ID table

X'14' IUCVSAVE Address of user savearea

X'24' IUCVCONN Maximum number of connections allowed (from MAXCONN in

VM directory entry)

The control external interrupt buffer (EIB) contains information about the last
interrupt on a control path. The application EIB contains information about the last
interrupt on a non-control path. For more information about control paths see the
lz/VM: CP Programming Services| book.

The user ID block (IUCD) chain and the path ID table are explained later in this
chapter in more detail.

The IUCPRMAD points to a copy of the last CP IUCV parameter list that was
issued by the GCS IUCV support, either implicitly (IUCVINI) or explicitly

Chapter 10. Debugging GCS 151

Debugging GCS

(IUCVCOM). The internal parameter list holds a copy of the last CP IUCV
parameter list that was issued by the GCS IUCV support on behalf of one of its
users. It is also used for IUCV functions that GCS IUCV support must start, for
example, to sever an incoming path to a user that has not issued an IUCVINI SET
function.

The User ID Blocks (IUCID)

User ID blocks contain information about active users in the IUCV environment.
There is an IUCID for each user, containing the user name, user word, and
associated task block address. The IUCIDs are chained together, with the most
recently added user at the beginning of the chain. The first IUCID is pointed to by
IUCVIDAN in the IUCV anchor block (IUCBK).

The user ID block is built when a user is admitted into the IUCV environment using
the IUCVINI SET macro. The name specified in the macro is the name by which the
user is known in the IUCV environment. When paths are established using
IUCVCOM CONNECT and IUCVCOM ACCEPT functions, the user names specified
on the two macro invocations identify the two parties wishing to do IUCV
communications. The IUCVINI CLR macro ends the IUCV environment for the
specified user. When the user is terminated from IUCV, the associated user ID
block is deleted from the user ID chain, and all paths for the user are severed.

The IUDB contains the following information:

Displacement Field Description

X'00 The next user ID block address

X'04' The general exit address

X'08' The user name

X'10' The user word

X'14' The task block address

X'18' Flags
Byte Field Description
1xxx The problem state indicator
x1xx The privilege state indicator
xx1x The exit will be run in AMODE 31

The Path ID Table (IUCPT)

The path ID table contains an entry for every possible IUCV path based on the
maximum number of paths available for this virtual machine. A path entry is filled in
when the path is established using IUCVCOM CONNECT, and also on the resulting
pending connect interrupt. Therefore, a single communication’s path is represented
by two path entries. A path can be in different states as indicated by the flags in the
path entry. Before any GCS IUCV function is processed, the state of the path is
checked to see if the function is allowed.

For more information on the Dump Viewing Facility and IUCV management control
blocks, see|‘Processing GCS Dumps with the Dump Viewing Facility” on page 137

Each path ID table entry is 20 (X'14") bytes long.

The path ID table contains the following information:

Displacement Field Description

152 z/vM: Diagnosis Guide

X'00'
X'04'
X'08'
X'oC'
X'10'

Debugging GCS

The address of user ID block

The exit address

The user word

The task block address

Flags

Byte Field Description
1XXX XXXX The path is active.
X1XX XXXX The connect is issued.
XX1X XXXX The connect is pending.
xxx1 XxXxx The path is quiesced.
xxxx 1xxx The path is severed.
XXXX X1xX The exit will be run in AMODE 31
XXXX Xx1x Problem state indicator
XXXX XXx1 Privilege state indicator

The task block address represents the task that was running when the path was
created. The user ID block address points to the user ID block for the owner of the

path.

The exit address is for the owner’s path-specific exit.

How to Find Information about a Path

You can find information about a path, such as who owns it and its present status,
in a path ID table entry for the path. The path ID provides an index into the path
table to get to the entry that describes the particular path.

* If you have a VMDUMP formatted dump, you can use the Dump Viewing Facility.

Enter the Dump Viewing Facility DUMPSCAN IUCV subcommand

The resulting display shows the important information found in each of the
path entries in the path ID table.

» |If you are manually displaying addresses and following chains, this procedure
yields the path table entry for a specific path ID:

Locate the Sl extension (SIE) address in the NUCON at X'5C4".
Locate the IUCV anchor block (IUCBK) address at SIE + X'B8'.
Locate the path ID table (PIDT) address at IUCBK + X'10".

The specified path ID is in hexadecimal.

Calculate the offset as follows:

Offset = pathid x X'14".

Each path table entry is X'14' or 20 bytes long.

For example, if pathid = X'B', the path entry is at displacement X'B' x X'14' =
X'DC' into the table.

The path entry is located at PIDT + offset.
See the path ID table entry map for the layout of the path entry.

Storage Management
The storage management component of GCS controls the allocation of storage for
a GCS virtual machine. GCS manages storage with three different perspectives:
» Storage location (private or common storage, above or below the 16 megabyte
line)
« Storage protection (storage key and fetch or store protection bits)
» Storage ownership (persistent or task related storage).

Chapter 10. Debugging GCS 153

Debugging GCS

Information about common storage for the whole virtual machine is in the storage
management anchor block (SMAB). To locate the SMAB, first locate the SIE
address at location X'5C4' in the NUCON and then locate the SMAB at
displacement X'40' in the SIE.

The fields describing common storage are:

1. The address of the start of low common storage is in SMASCOML (SMAB +
X'60").
The length of low common storage is in SMALCOML (SMAB + X'64").

2. The address of the start of high common storage is in SMASCOMH (SMAB +
X'68").
The length of high common storage is in SMALCOMH (SMAB + X'6C").

For more information on storage management mapping and field descriptions, see
'SMAB—Storage Management” on page 209.|

Storage Anchor Blocks

154

There are five types of storage anchor blocks:
* Private storage anchor blocks:

— Low private anchor block (LPAB)

— High private anchor block (HPAB),

depending on the position of the private storage—above or below the 16
megabyte line.

* Common storage anchor blocks:
— Low common anchor block (LCAB) and
— High common anchor block (HCAB),

depending on the position of the common storage—above or below the 16
megabyte line.

» Task storage anchor blocks (TSAB).

The first four storage anchor blocks (LPAB, HPAB, LCAB and HCAB) are identical.
They contain pointers to the start of arrays of major and minor storage anchor
control blocks (SACBs) describing the free storage pages.

The TSAB contains a pointer to the TSAB extension which is a string of pointers to
the start of a double-linked list of task storage header blocks (TSHBs), one pointer
for each division (or grain) of the storage. The TSHBs describe the storage
belonging to a task.

To find any of the four free storage anchor blocks:
1. Locate the SIE address at displacement X'5C4' in the NUCON.

2. Locate the pointer to the storage management anchor block (SMAB). This
pointer is at displacement X'40' in the SIE.

The LCAB is pointed to by the SMALCAB field (at SMAB + X'00").
The HCAB is pointed to by the SMAHCAB field (at SMAB + X'04').
The LPAB is pointed to by the SMALPAB field (at SMAB + X'08').

The HPAB is pointed to by the SMAHPAB field (at SMAB + X'0C').

ook w

The TSAB is pointed to by the field TBKSTOR at displacement X'A8' in the task
block (TBK).

z/NM: Diagnosis Guide

Debugging GCS

For more information on the storage anchor block mapping and field descriptions,

see ['ANCH—Storage Anchor Block” on page 210.|

Description of the Storage Anchor Control Blocks (SACBSs)

There are two types of storage anchor control blocks (SACBs): major and minor.

A major SACB is 14 bytes long, and a minor SACB 10. They are in contiguous
storage, are built at initialization time, and are permanent.

There is a major SACB to describe each page of free storage. Contiguous to each
major SACB is a chain of minor SACBs. Each of these describes a noncontiguous

free area in the page.

Important Fields in Major SACBs

The major SACBs contain the following fields:

Displacement
X'00'

X'04'

X'08'

X'0A
X'oC'

X'oD!

Important Fields in Minor SACBs

Field Description

MAJNXTPT points to the major SACB for the next
page of the same key.

MAJBKPTR points to the major SACB for the
previous page of the same key.

MAJMAXLN is a 2-byte field that names the largest
free area on the page that does not begin on a
page boundary.

MAJLNCON is a 2-byte field that gives the length of
the free area at top of the page.

MAJKEY is an 8-bit field that contains the key and
fetch bit for the page.

Flags

Byte Field Description

1111 xxxx Not used

XXXX 1XXX MAJTOLIN SACB to go to no key
queue

XXXX X1xx MAJLIMBO SCAB to go to no key
queue

XXXX XX1x MAJENDL Major SACB is at the
low end of array of majors

XXXX XXx1 MAJENDH Major SACB is at the
high end of array of majors

Minor SACBs are control blocks used for the following purposes and contain

specific fields:

1. Combined with a major SACB, they describe free storage on a page boundary.
Each of these minor SACBs are headers for a chain of minor SACBs that
describe all free storage on a given page.

Displacement
X'00'

Field Description

MNORNXT points to the next minor SACB used
to describe the next noncontiguous free area on
the same page.

Chapter 10. Debugging GCS 155

Debugging GCS

Checking for Storage Fragmentation

Scanning the Major and Minor SACBs

X'04'

X'08'

MNORPTREF points to the free area on the page
boundary.

MNORLN is the length of free area on the page
boundary; this field has a length of 2 bytes.

They describe free storage not on a page boundary. These minor SACBs are
found on pages of storage that are chained together and are pointed to by
ANCHPGMN in the anchor block.

Displacement
X'00'

X'04'

X'08'

Field Description

MNORNXT points to the next minor SACB used
to describe the next noncontiguous free area on
the same page.

MNORPTREF points to free storage not on a
page boundary.

MNORLN is the length of the free storage, this
field has a length of two bytes.

For more information on the Dump Viewing Facility and storage management
control blocks, see ['Processing GCS Dumps with the Dump Viewing Facility” on|

Check the fields ANCHPGL and ANCHPGH, which point to the major SACBs that
represent the lowest and highest completely free pages of storage. If these pointers
are both zero, then storage is fragmented down to the page level. If they are not
zero but the request is for greater than a page, scan the major SACB between
these major SACBs to see if there is sufficient storage.

1.

Find the appropriate anchor block for private or common storage.

2. Starting with ANCHMAJL, scan the major/minor combinations:

a. Major SACBs exist for each page of private/common free storage.

b. Minor SACBs have the address of the page represented (MINPTRF at

X'04").

c. Match the page represented with the address of the storage in question.
1) These minor SACBs are contiguous with the major SACBs they

describe.

2) Scroll until the corresponding page is found.

Checking Free Storage on Any Given Page

156

1.

z/NM: Diagnosis Guide

Find the appropriate anchor block for the private or common storage.

2. Starting with ANCHMAJL, scan the major/minor combinations for the major
SACB for the appropriate page. For more information, see |“Scanning the Majod

[and Minor SACBs.’|

The first minor SACB is the header for a chain of minor SACBs that describe all
free storage for the page. This minor SACB describes the free storage on the
lower page boundary. If MNORLN is 4 KB, the page is fully free and is available

for use in any key.

If MNORLN is not 4 KB, look at MAJMAXLN. This field tells you the largest free
piece of storage available on the page not on a page boundary.

Debugging GCS

Note: Because this page is not completely free, it cannot be used for a request
of another key.

5. To calculate free storage for two or more contiguous pages, check MAJLNCON
for free storage at the top of the page and MNORLN for free storage at the
bottom of the page.

6. To find the description of all free storage on a given page, follow the chain of
minor SACBs.

Finding the Key for a Given Page

» To find the actual key for a given page of storage, use the CP command
DISPLAY K.

» To see what key GCS has for the same page:

1. Scan the chain of major SACBs for the one that describes the page you are
interested in. For more information, see |“Scanning the Major and MinorI
[SACBs” on page 156.|

2. To find the key and fetch bit in MAJKEY:
a. The GCS storage management key and fetch protect bit are right-justified.

b. In GCS, 1C corresponds to EO through E7 in CP, meaning key 14
nonfetch-protected storage.

MAJKEY 000kkkkF CP KEY | KKKKFXXX

» To check pages of free storage in any given key and fetch protection:
1. Find the appropriate anchor block for private or common storage.

2. ANCHKEYP (at X'04' in LPAB or HPAB) is the start of an array of 32 records
that are the anchors for chains of major SACBs for each key and protection
status.

3. To find the appropriate pointer for the key and fetch protection you want to
follow down the chain:

a. The first pointer is for key zero nonfetch-protected, the second for key
zero fetch-protected, and so on.

b. This pointer will point to the first major SACB that describes free storage
for the key and fetch protection.

c. Use MAJNXTPT, the forward pointer, and MAJBKPRT, the backward
pointer, to follow up and down the chain.

Control Blocks Describing the Storage Owned by a Task

Task-owned storage can only be in private storage. Though a task can get
common storage with the GETMAIN macro, that storage is not automatically freed
when the task ends and must be freed with the FREEMAIN macro by the task itself
or by another task. No control blocks describe the gotten common storage.

The task-owned storage is described by two types of control blocks:

» Task storage headers (TSHs)

» Gotten storage blocks (GSBs).

As shown in [Figure 11} the TSHs are blocked in blocks called task storage header

blocks (TSHBs) and the GSBs are blocked in blocks called blocks of gotten
storage blocks (GSBBs). The TSHBs are linked in a double linked list. Each TSH

Chapter 10. Debugging GCS 157

Debugging GCS

points to a GSBB block (block of GSBs). Each GSB has the final description of a
piece of gotten storage (address, length, subpool, and key).

The TSHB contains a block header followed by a string of TSHs. The GSBB

contains a block header followed by a string of GSBs. Neither the TSHs in a TSHB
nor the GSBs in a GSBB are linked together.

158 z/vM: Diagnosis Guide

A8

10

Debugging GCS

—>A (see A below)

TSAB
TBKSTOR |[—>»
0 |TSATBK
TSABE
4 | TSATSABE |—>
0 |GRAINO
8 |Bitmap
of 4 |GRAIN1
subpools
owned 8 |GRAIN2
C |GRAIN3

TSH page header

TSHPNFP

TSHPPFP

TSHPCNT

TSHB

TSHHNTSH

TSHHPTSH

TSHHTSAB

TSHHCNT

TSH

=TSH =
I

TSH (expansion)

TSHLADDR

TSHAGSBB |———

Number of grains =
SIEVMSIZ/SMAGRAIN

GSB page header

GSBPNFP

GSBPPFP

GSBPCNT

GSBB

v

GSBHTSH

GSBCNT

GSB

=GSB

L 1

GSB (expansion)

GSBADDR

GSBLEN

GSBSUBP

GSBFLAG

GSBKEY?2

Figure 11. TSHB and GSBB Control Blocks

Each page of Task Storage Header (TSH) blocks contains a header at the
beginning of the page. The fields in the page header are:

Disp
X'00'

Label

Field Description
TSHPNFP Next page of TSH page blocks.

Chapter 10. Debugging GCS

159

Debugging GCS

Disp Label Field Description
X'04' TSHPPFP Previous page of TSH page blocks.
X'08' TSHPCNT Number of used TSH blocks on this page.

The fields in the Task Storage Header Block (TSHB) are:

Disp Label Field Description

X'00' TSHHNTSH The link pointer to the next TSH block for the same task
X'04' TSHHPTSH The link pointer to the previous TSH block for the same task
X'08' TSHHTSAB The link pointer back to the TSAB

X'oC' TSHHCNT The number of TSHs in this block

X'10' The first TSH in this block

The fields in a TSH are:

Disp Label Field Description

X'00' TSHLADDR The low address of the areas described by the GSBs in the
corresponding GSB block

X'04' TSHAGSBB The address of the block of GSBs

The description of the relation between the TSHB and the block of TSHs is in the
SMAB. The field descriptions are:

1. The length of a block of TSHs (including the block header) is in the SMATSMBL
(SMAB + X'40").

2. The number of blocks of TSHs on a page is in SMATSHBN (SMAB + X'42").
3. The maximum number of TSHs in a block is in SMATSHBM (SMAB + X'44').

Each page of Gotten Storage Block (GSB) blocks contains a header at the
beginning of the page. The fields in the page header are:

Disp Label Field Description

X'00' GSBPNFP Next page of GSBs.

X'04' GSBPPFP Previous page of GSBs.

X'08' GSBPCNT Number of used GSB blocks on this page.

The fields in a Block of Gotten Storage Blocks (GSBB) are:

Disp Label Field Description

X'00' GSBHTSH The link pointer back to the TSH
X'04' GSBCNT The number of GSBs in this block
X'08' The first GSB in this block

The fields in a GSB are:

Disp Label Field Description

X'00' GSBADDR The address of the gotten storage

X'04' GSBLEN The length of the gotten storage

X'08' GSBSUBP The subpool of storage

X'09' GSBFLAG A flag byte containing, in the right-most bit, the flag showing whether

the piece of storage described by the GSB is in key zero
nonfetch-protected
X'0B' GSBKEYZ Key 0 non-fetch protected storage.

160 z/VM: Diagnosis Guide

Debugging GCS

The description of the relation between the GSBB (block of GSBs) and the GSBs is
also in the SMAB. Field descriptions are:

1. The length of a block of GSBs is in SMAGSBBL (SMAB + X'46").
2. The number of GSB blocks on a page is in SMAGSBBN (SMAB + X'48').
3. The maximum number of GSBs in a block is in SMAGSBBM (SMAB + X'4A').

How to Find the Storage Belonging to a Given Task
1. Find the task block (TBK) (see[‘Task Management” on page 140).

2. Find TBKSTOR (X'A8' into the TBK), which points to the task storage anchor
block (TSAB).

3. TSATSABE (X'04' into the TSAB) points to the task storage anchor block
extension (TSABE).

4. TSABTSHB (X'00' into the TSABE) points to the first TSHB (TSH block) of the
array of TSHBs belonging to the task.

How to Check What Subpools Belong to a Given Task

1. Find the task block (TBK) (see[‘Task Management” on page 140).

2. TBKSTOR (X'A8' into the TBK) points to the TSAB.

3. TSASPOOL (X'08' into the TSAB) is a 256-bit map of all possible subpool
values. Each subpool number that is owned by the task has the appropriate bit
on. If the bit is off, then there is an owning task with the corresponding bit on.
You can search up the task chain to find the owner of any given subpool by

looking for the appropriate bit to be on. At least one task has the bit on. The
commands task has all 256 bits on.

System-Wide Description of Storage

The total of your virtual machine size (including common storage, though not used
as task-oriented storage) is divided into sections called grains. The size of a grain
is determined at IPL time when the SMAB is built. The field describing the size of a
grain is SMAGRAIN (SMAB + X'3C'). The field named SMATSBEL (SMAB + X'18')
contains the number of existing grains times 4. Each grain has a pointer in the
TSABE to the first TSHB for that task in that grain. Consequently, SMATSBEL
represents the size of the TSABE (TSAB extension). Furthermore, there is, for each
grain, a double-linked list of TSHBs pertaining to that task. The number of grains is
fixed at IPL time; therefore, to find the anchor of TSHBs for a particular part of
storage, you need to determine the pointer in the TSABE (a zero entry indicates
there is no TSHB) pertaining to that particular grain.

System-Wide Description of TSHBs and GSBBs

The TSHBs and GSBBs reside on four (two for each type of block) double-linked
lists of pages. All four are anchored in the SMAB.

For each type of block the two linked lists are:
» Alist with full pages of TSHBs or GSBBs
* Alist of pages containing space for at least one block (TSHB or GSBB).

Chapter 10. Debugging GCS 161

Debugging GCS

The TSHBs are double-linked lists, and thus can reside on both lists of pages. The
pointers in the TSABE anchor the lists of TSHBs for each grain and point
somewhere on one of the two lists of pages to the first TSHB for that particular

grain.

The anchors in the SMAB of the four double-linked lists of pages are the following:

Displacement

X"1C'
X'20'
X'24'

X'28'
X'2C'
X'30'
X'34'

X'38'

Field Description

Pointer to first page filled with TSHBs

Dummy backward pointer

A pointer to the first page of TSH blocks containing
at least one free block

A dummy backward pointer

A pointer to first page filled with GSB blocks

A dummy backward pointer

A pointer to the first page of GSB blocks containing
at least one free block

A dummy backward pointer

Each page from any of the four lists has a header, the blocks follow immediately
afterward. The fields of the header are:

Displacement
X'00'

X'04'

X'08'

Field Description

A pointer to the next page of TSH or GSB blocks
(TSHBs or GSBBs)

A pointer to the previous page of TSH or GSB
blocks (TSHBs or GSBBSs)

The number of used TSH or GSB blocks (TSHBs or
GSBBs) on this page

Depending on the position of the page inside the list, the first or second position

could be zero.

Common Storage Management Problems

FREEMAIN or GETMAIN goes into an infinite loop

1. GETMAIN or FREEMAIN is searching for the task that owns the subpool
requested. The task chain or the TSABs may have been overlaid.

a. This problem will show up on a task-related request.

b. Find the active task and search the task chain for each ancestor task. See if
any have been overlaid. (GETMAIN and FREEMAIN search back up the
task chain to find the task that owns the subpool.)

c. TBKSTOR (X'A8' into the task block) points to the task storage anchor block

(TSAB).

d. TSASPOOL (X'08' into the TSAB) is a 256-bit map of all the subpools
owned by this task. Either the active task or one of the owning tasks must
have the appropriate bit on for a given subpool. GETMAIN or FREEMAIN
will continue to search until the owner of the subpool is found.

Abend 80A, 804, or 878:

Improper length or insufficient virtual storage

1. Check the trace table for the length of the request. (Tracing is done for SVC
invocations of GETMAINs and FREEMAINs. Branch entries to GETMAIN and

FREEMAIN are not traced.).

162 z/vM: Diagnosis Guide

Debugging GCS

If the length is valid, then check for fragmentation. (See[‘Checking for Storage|
[Fragmentation” on page 156.)

If there is fragmentation, find out who has not freed the storage.

a. Find out who is not freeing storage by first finding the key of the storage
with the CP command DISPLAY K.

b. If most of the storage allocated is in key 6, then VTAM is not freeing the
storage.

c. If most of the storage is in key 14, then storage is not being freed by an
application such as RSCS.

d. If most of the storage is allocated in key 0, the problem could be internal to
GCS, or GCS could be getting storage in behalf of some application.

e. Check both the allocated storage of the task blocks and the free storage
described by the major/minor SACB for patterns. Are the same size pieces
of free storage being left? All major SACBs are found in contiguous storage
and can be easily scanned. All the minor SACBs that describe free storage
can be found on pages of minor SACBs pointed to by ANCHPGMN found in
the anchor blocks. Thus you can easily scan the minor SACBs.

f. Check the trace table for the last GETMAINs. See if FREEMAINs are done
for that storage.

Abend 778: One of the following could be true:

1.
2.

3.

There is an invalid mode byte in SVC parameter list.

The program is returning storage in wrong key.

a. It could be returning someone else’s storage.

b. A privileged program could have changed the key.

Storage management ran out of storage for internal control blocks.

Check the following:

1.
2.

3.

The parameter list set up by the macro.
Whether actual storage key matches what GCS storage management identifies

as the key. For more information, see [‘Finding the Key for a Given Page” on|
page 157.

Fragmentation.

Tracing Storage Management

Supervisor tracing using ITRACE and ETRACE includes tracing GETMAINs and
FREEMAINs (called through SVCs) as they occur in GCS. GETMAIN trace entries
(X'08' type) and FREEMAIN trace entries (X'09' type) contain much of the same
information:

The task ID

The storage address obtained or released
The length of the storage

The storage subpool

The invoker’s address.

GETMAIN also includes the key of the storage being obtained.

Chapter 10. Debugging GCS 163

Debugging GCS

General I/0

164

GCS General I/0 (GENIO) Functions: All /0 except DASD and console 1/O is
performed using the GCS GENIO macro. However, because GCS does not provide
any device specific code, using the GENIO macro requires that the application
requesting the I/O has to perform all the related I/O control tasks, including error
recovery.

You can use operands of the GCS GENIO macro to request the following functions:

OPEN is needed for an application to use and own a particular device. To open a
device, the program provides the virtual device address and the address of
an exit routine. GCS passes control to this exit routine whenever the
opened device presents an I/O interrupt.

When a GENIO OPEN is issued, GCS gets a table entry for the GENIO
table (GIOTB) for the device and initializes the entry.

A task or program may not open a device that is already open.

CLOSE
closes a device when the device is no longer needed.

GCS cleans up any /O requests queued on the virtual channel queue, halts
any active 1/0, and deletes the entry from the GIOTB table. (See
[General I/0 Table (GIOTB)” on page 166|for a discussion of the GIOTB
table.)

The exit routine specified in the GENIO OPEN macro is no longer
scheduled if I/O interrupts are received from the device.

MODIFY
modifies a CCW of an active 1/0 program. DIAGNOSE code X'28' is issued
to CP to effect the CCW maodification.

CHAR requests the characteristics (such as device class, type, and model) of a
device.

GCS gets this information by using DIAGNOSE code X'210'".

The CHAR function does not require the device to be open in order to
obtain the requested information.

START
starts an 1/O operation to an open device.

For this operation, the program specifies the virtual device address and the
address of a channel program to be run on the device. The channel
program key is set to the PSW key of the program that issued the START.

GCS checks that:
* The device is open
* The device is not busy with another operation.

GCS issues a virtual SSCH instruction to the device.
GCS does not accept another START function to the device until the current

operation completes. The end of the operation is identified by a device end
interrupt.

z/NM: Diagnosis Guide

IOSAVE

Debugging GCS

STARTR
lets an authorized program use real channel programs with a dedicated
device. Only real attached devices may use real channel programs.

If a device is not capable of real I/O (not a real device), a return code is
set, and no further processing takes place.

The process of a STARTR function is similar to the START function, the
only difference is GCS uses DIAGNOSE code X'98' instead of an SSCH
instruction.

Note: A virtual machine must be authorized to issue DIAGNOSE code
X'98'". This authorization is granted by specifying DIAG98 in the
directory entry of the virtual machine (OPTION statement).

If the machine is not authorized for DIAGNOSE code X'98', a return code is
passed to the program issuing the GENIO STARTR function. See the
|CP Planning and Administratiod book for a description of the setup
necessary to use DIAGNOSE code X'98'.

HALT forces GCS to halt the device.

General I/0O in GCS lets a program drive any I/O device that is defined on the
virtual machine except a DASD. Using the GENIO macro, a user can obtain, use,
and release any I/O device. For further information on the GENIO Macro, see the
[z/VM: Group Control System book.

Information pertaining to general I/O is found in the IOSAVE area. IOSAVE is used
as a save area when 1/O interrupts are being handled. It resides in private storage
and is loaded during system initialization. The address of IOSAVE is found in the
load map for the system. The user must have the load map (for the IOSAVE
address) to do general I/O debugging for GCS.

IOSAVE gives an overall picture of general I/O in the GCS virtual machine at a
point in time, such as the time of the dump:

* The I/O old PSW, containing the address of the interrupting device in the second
halfword of the PSW

* The address of the first entry in the general I/O table linked list

» A pointer to the page fix table (PFXTB) that identifies the pages that have been
locked in real storage

* The address of the last entry in the general I/O table related to GENIO
processing (either from an I/O interrupt or from issuing a GENIO macro).

The IOSAVE block resides in private storage and is built during GCS initialization.
The initial value of all fields in IOSAVE is 0.

To determine the start address of the IOSAVE control block, locate GCTIOSAV in
the GCS nucleus map.

The IOSAVE contains the following information:

Displacement Field Description

X'00' A save area for registers (twice)

X'90' The 1/0O old PSW

X'98' The SCSW from the I/O causing the interrupt

Chapter 10. Debugging GCS 165

Debugging GCS

X'A0' A pointer to the general I/O table

X'A4’ The address of the page fix table

X'A8' The address of the last entry (before the current) in
the general I/O table

X'AC' A real I/0 authorization flag

X'B0' The interrupt code

X'B2' The instruction length

X'B4' The address of the first entry in the subchannel

identification table

The saved PSW and SCSW are stored in the IOSAVE from the last I/O interrupt.

The Subchannel ID Table (SIDTABLE)

At IPL time, a table is built containing the existing configuration. Each entry
corresponds to one subchannel. This is the SIDTABLE, a linked list with an entry for
every active device. The SIDTABLE is anchored in IOSAVE + X'B4', and it is
cross-linked with the general 1/0O table. (Each entry in the general 1/O table points to
a SIDTABLE entry and the reverse if there is a correspondent entry in the general
I/O table.)

A SIDTABLE entry provides information about the device as:
» Subchannel ID

* Subchannel address

» Virtual and real device characteristics

* The interrupt request block for the respective device

* The operation request block for the respective device.

The fields in a SIDTABLE entry are:

Displacement Field Description

X'000' The next subchannel pointer
X'004' The subchannel ID

X'008' The subchannel address
X'00C' The virtual device type class
X'00D! The virtual device type

X'00E' The virtual device status
X'00F' The virtual device flags

X'010' The real device type class
X'o11' The real device type

X'012' The real device model number
X'013' The real device feature code
X'014' The address of the GCTGIOTB entry
X'018' The interrupt request block
X'118' The operation request block

The General 1/0 Table (GIOTB)

The general 1/0O table (GIOTB) is found at IOSAVE + X'A0". It is a linked list with an
entry for every open device.

A GIOTB entry provides information about the device, such as:
* The device address
* The task ID and task block address of the task that has opened the device

166 z/vM: Diagnosis Guide

Debugging GCS

Only one task can own a device at any one time. A task owns a device when it
opens the device and loses ownership when it closes the device, or when the

task ends.

» Several flags describing the status of the I/O activity on the device

If the flag for “exit scheduled” is on, an asynchronous exit block (AEB), pointed to
by GIOTB+X'38', contains information related to the exit and is enqueued on the
AEB queue pointed to by the SIE at SIE+X'18".

» Characteristics of the device (virtual and real)
* A pointer to the subchannel ID table (SID) correspondent entry.

The field IOSGIOTB is found at IOSAVE + X'A0'.

The general I/O table contains the following information:

Displacement

X'00'
X'04'
X'08'
X'oC'
X'OF'

X'14'

X'18'
X'1C'
X'24'
X'38'
X'40'
X'sC'
X'D8'

I/O Interrupt Handling

Field Description

The address of the next entry in the table
The device address

The address of the task requesting an open
The task ID of the task requesting an open
Flags

Byte Field Description

1XXX XXXX I/O is active

X1XX XXXX I/0 is queued

XX1X XXXX An asynchronous interrupt has
been queued

xxx1 XxXxx An exit has been scheduled for
asynchronous interrupt

XXXX 1XXX An asynchronous interrupt has
been queued

XXXX X1xx An asynchronous interrupt is
pending

XXXX Xx1x Wait

XXXX XXx1 Format 1 type CCWs are being
used

The address of the exit when 1/O has been
completed (GIOEXIT)

(1xxx xxxx) Call exit in AMODE 31

The characteristics of the virtual device

The characteristics of the real device

The address of the CCW to be started

The address of the asynchronous exit block (AEB)
The synchronous interrupt control block (ICB)

The asynchronous interrupt control block (ICB)
The address of SID table entry

The exit routine specified in the GENIO OPEN macro is provided with the SCSW
from the interrupt, and with the sense bytes if a unit check occurred. When
subsequent SCSWs are received, the status bytes are OR’d with the SCSW already
stored in the interrupt control block.

The exit routine receives control in the key and state of the task that opened the

device:

Chapter 10. Debugging GCS 167

Debugging GCS

 If the task is an authorized program, the exit routine is entered with interrupts
disabled.

 |f the task is not an authorized program, the exit routine is entered with interrupts
enabled.

Interrupt Control Blocks

Within each GIOTB entry are two interrupt control blocks (ICBs) that keep
information about the last synchronous (GIOSICB) and asynchronous (GIOAICB)
I/O interrupts for the device.

The asynchronous and synchronous ICBs are mapped alike, except that the
synchronous ICB contains sense bytes in case of unit checks. The synchronous
ICBs contain a 0 in the first byte, while the asynchronous ICBs contain a 1.

The ICBs contain the device address and the Subchannel Status Word (SCSW).

The interrupt control blocks contain the following information:

Displacement Field Description

X'04' The device address

X'08' The first two words of the SCSW

X10' The sense bytes (synchronous only - 32 sense
bytes)

X'40" The complete SCSW from the interrupt

How to Find What Pages Are Locked by PGLOCK

Finding Pages

The page fix table (PFT) keeps track of the virtual pages that are locked into real
storage by the PGLOCK macro. When a page is locked, an entry for that page is
added to the PFT. The entry is deleted from the PFT when the page is unlocked
using the PGULOCK macro. The PFT entries are chained together and are pointed
to from IOSAVE (IOSAVE + X'A4').

A PFT entry contains the following information:

Displacement Field Description
X'00' The address of the next PFT entry
X'04' The virtual address of the page
X'08" The real address of the page
X'oC' The task ID that locked the page
X'OE' Flag:

X'80' AMODE 24 page

Not Paged in After a Page Fault

If you are using the pseudo page fault support by issuing the CP command SET
PAGEX ON and the task block is waiting for page fault completion(s), you can find
out what page it is by following these steps:

At X'13C' into the SIE, there is a pointer which points to a chain of ECBs (Event
Control Blocks) that provide information about tasks waiting for a page of storage to
be paged into real storage. Each ECB control block pointed to by the pointer at
X'13C" into the SIE has the following format:

Displacement Field Description

168 z/vM: Diagnosis Guide

Debugging GCS

X'00 The forward pointer to the next ECB control block
X'04' The backward pointer to the previous ECB control
block
X'08' The address of the page having page fault
X'oC' An ECB
Byte 01 Flag Field
TXXXXXXX The task is waiting for the page to
be paged in
X'ob! The three-byte address of state block of task

waiting for page

Use the state block pointer to find the backward pointer to the task block that is
waiting for the page to be paged in real storage.

The page fault address for the last page fault handled is at X'90' If the high order bit
is on, GCS has been notified of the completion. The program interrupt code, which
must be X'14' for a page fault, is at X'8E'

How to Find the Characteristics of a Device

The GENIO macro with the CHAR option gives information about a specific device.
The data returned contains both real and virtual characteristics. The device does
not have to be open for you to enter the GENIO CHAR macro.

If the device has been opened, an entry in the general I/O table (GIOTB) for that
device has been made. The GIOTB contains both real and virtual characteristics for
the device. If there is no real device associated with the virtual device, the real
characteristics are zero.

I/0 Debugging

I/O problems can occur in four areas: CP, GCS, VSCS, or VTAM and its
applications. Indicators that there may be an 1/0 problem in one of these areas
include:

* Printers or a SNA/CCS terminal that hang

* A VTAM link that does not initialize

* A questionable status returned from 1/O.

When you suspect an I/O problem, you should first keep track of error messages
and keep the console log, especially for VTAM. I/O problems generally require
recreating the problem using traces. You can set traces for each area suspected of
an 1/O problem. Trace files are helpful to track the sequence of events following the
handling of an I/O interrupt. Proceed as follows:

1. Set up traces for CP, GCS, VSCS, and VTAM by entering:

trsource id xx type gt user vtam

trsave for id xx on dasd

trsource enab id xx

vscs traceon (ext (starts the VSCS external trace)

etrace gtrace sio i/o group:

vtam f trace, id=luname, type=buf (or type=i/o) (starts the VTAM trace)

2. Recreate the problem.
3. Turn off the traces by entering:

Chapter 10. Debugging GCS 169

Debugging GCS

trsource disa id xx

vtam f notrace, id=luname, type=buf (or type=i/o) (stops the VTAM trace)
etrace end (stops the GCS trace)

vscs traceoff (stops the VSCS trace)

If you want to do an internal trace:
1. Using ITRACE involves entering only the GCS and VTAM parts of this scenario:

itrace gtrace (enables GCS to record GTRACE data in the internal trace table)
vtam f trace,id=a0la3e0,type=io (instructs VTAM to record I0 trace data)
vtam f trace,id=a0la3e0,type=buf (instructs VTAM to record buffer trace data)

2. Recreate the problem.
3. Turn off the traces by entering:

vtam f notrace,id=a0la3e0,type=io (stops the VTAM I0 trace)
vtam f notrace,id=a0la3e0,type=buf (stops the VTAM buffer trace)
itrace gtrace off (stops GCS internal tracing for GTRACE).

Trace Table Entries

After tracing has completed, the trace events for all areas that were traced are
found in the GCS internal trace table, unless a wraparound has occurred. If GCS is
using an external trace, the trace entries are in the TRFILE created for the
TRSOURCE trace ID. VTAM and VSCS entries in the trace table are entered as
GTRACE entries.

GCS traces of I/O requests (type X'06') and interrupts (type X'03') contain
information that may be useful when debugging I/O problems. For more information
on debugging VTAM, see VTAM Diagnosis Guide.

Recreating the Problem

When unexpected results occur on terminals or other SNA devices, you should
recreate the problem with VTAM and VSCS traces on. This helps isolate the failing
component. Most hung LU conditions are not GCS problems; they are probably CP
or VSCS problems.

Tracing I/O is important when trying to recreate an I/O problem. It is helpful to know
the state and configuration of the system before and after I/O is processed.

When you track I/0O for a VTAM application, you should look at the parameter list
that is being passed to GCS in the GENIO macro:

» Set a trace stop at the beginning of the GCS GENIO module (GCTGIM). This
address is found in the load map for GCS.

* When VTAM issues the GENIO macro for I/O processing, the trace will occur.
* Register 1 will point to the parameter list. Ensure that it is a valid parameter list.

Command and Console Support

The GCS VM operator uses the console to communicate with either the GCS
supervisor or applications through commands. The GCS supervisor and the
applications can communicate with the operator through write-to-operator (WTO)
and write-to-operator-with-reply (WTOR) instructions.

Command and console support includes commands issued from a terminal by a
user and commands issued through the CMDSI macro. A user can use the CMDSI

170 z/vM: Diagnosis Guide

Debugging GCS

macro to enter GCS-, CP-, or LOADCMD-defined commands from within a program
unning in GCS. For more information on the CMDSI macro, see the

;
Control System book.

LOADCMD Command

The LOADCMD command is included in the command support. LOADCMD lets
users define their own command names for an entry point within a module. The
module must reside in a load library that the user has defined with the GLOBAL
command.

When the command defined by LOADCMD is issued, the module containing the
ntry point gets control. For more information on LOADCMD, see the|z/VM: Group

e
Control System book.

The LOADCMD command uses the NUCEXT function to determine if a command is
already loaded as a nucleus extension. If the nucleus extension does not exist,
NUCEXT is used to establish a nucleus for the command.

The chain of NUCX blocks are pointed to by SIENUCX located in the Sl extension
at X'A4'".

The NUCX contains the following important fields:

Displacement Field Description

X'00' NUCXPRT points to the next NUCX block

X'04' NUCXUWRD is the user fullword

X'08" NUCXNAME names the command

X'10' NUCXPSW points to the starting PSW for the
nucleus extension

X171 NUCXKEY is the user’s key-bit(8)

X'14' NUCXENTR points to the entry point address

X'30' NUCXADDR is the address of the NUCCBLK that
corresponds to this entry point

X'34' NUCXTASK contains the task ID of the

establisher-fixed(16)

NUCON Information

NUCON has a command area that contains information about commands that have
been issued. This area contains information such as the command input line, the
tokenized parameter list, and the pointers to the extended argument list.

NUCON contains the following command areas:

Displacement Field Description

X'2E8' The command input line

X'388' The tokenized parameter list

X'5B8' The address of the command token

X'5BC' The address of the beginning of the argument string
X'5C0' The address of the end of the argument string
X'5C4' The address of the SIE state descriptor block

The command input line contains the last command or commands the user entered
from the terminal along with the tokenized parameter list. The tokenized parameter
list is built in NUCON when the command and parameters are scanned and

Chapter 10. Debugging GCs 171

Debugging GCS

validated. The extended parameter list is also built during the scanning, and the
fields for the extended parameter list in NUCON are filled in. When issuing one or
more commands from the command line, only the command token and parameter
list of one of the commands are included in the extended parameter list.

SIE Information

172

The SIE state descriptor block contains a commands and console area. This area
contains such information as ECBs, CCWs, and pointers to the queues for the
commands, messages, and replies that have not yet been processed.

The SIE contains the following command and console areas:

Displacement Field Description
X'54' The attention interrupt ECB
X'58' The 1/0O complete ECB
X'5C' The output pending ECB
X'60' The command ECB
X'64' FLAGS

TXXX XXXX Read /O is in progress

X1XX XXXX Write I/O is in progress

XX1X XXXX An attention is pending

xxx1 xxxx Output is pending
X'68' The address of the first CMDBUF on the queue
X'6C' The address of the last CMDBUF on the queue
X'70' The address of the first WQE on the queue
X'74' The address of the last WQE on the queue
X'78' The address of the first ORE on the queue
X'7C' The address of the last ORE on the queue
X'80' The Read/Write CCW
X'88' The No-Op CCW
X'90' The ORE ID bits
X'9D' The last assigned ORE ID

Each ECB in the SIE is 4 bytes long. The first byte in the ECB is the most
important. If the first bit is set on, the ECB is waiting. If the second bit is on, the
ECB has been posted.

The following queues are maintained by the communications task:
+ CMDBUF

* Write queue elements (WQE)

* Operator reply elements (ORE).

Each of these queues is pointed to from within the SIE and contain elements that
have not yet been processed. As a command, write message, or reply is processed,
it is taken from the queue. The first element on each queue is the next element to
be processed. The last element on each queue is the most recently added element
to the queue.

The SIE contains two CCWs. The first CCW is used for READ/WRITE, the second
CCW is a no-op. The CCW contains a command code (CC), a data address, and
the length. The data address points to the data to be read or written. The length of
the data is given in the length field.

z/NM: Diagnosis Guide

Debugging GCS

A format 0 CCW is mapped as shown in [Figure 12

Data

cc Address

Length

CC = X '0A" —» READ
CC =X'09" —» WRITE

Figure 12. CCW Mapping

The ORE ID bits in the SIE are used to keep track of which reply numbers are
outstanding (00 through 99). If the bit is on (1), the reply ID has been assigned, but
the reply is still outstanding. When the ORE is built as a result of a WTOR
instruction, the ORE ID is assigned from those that are available. When the reply is
processed, the ORE is freed, and the ORE ID is made available again. (The bit
associated with the ID is turned off.)

CMDBUF
The CMDBUF queue contains commands that have not yet been processed.
Immediate commands are processed as soon as they are entered and are not
entered into the CMDBUF queue. A CMDBUF element contains the command input
data, the extended parameter list, and the tokenized parameter string. These fields
correspond to fields in NUCON. The last CMDBUF in the queue contains the same
information as in NUCON if it was the last command issued. If an immediate
command was the last command issued, that command’s parameter list is found in
NUCON.
The CMDBUF element contains the following information:
Displacement Field Description
X'00' The next CMDBUF on the queue
X'04' The length of the command data
X'08' Command input data
X'8C' The address of the command token
X'90' The address of the start of the argument string
X'94' The address of the end of the argument string
X'B0' The tokenized parameter list

WQE and ORE

The WQE queue consists of messages to the VM operator. A WQE is built when a
WTO or WTOR is issued. When the operator processes the WQE, it is taken from
the queue. If a reply is expected (WTOR issued), a corresponding ORE is found in
the ORE queue. The operator’s reply is placed in the reply buffer pointed to by the
ORE. If the message did not expect a reply (WTO issued), no corresponding ORE
is present.

A WQE contains the following information:

Displacement Field Description

X'00' The address of the next WQE on the chain
X'06' The length of the message text

X'08" Message text

Chapter 10. Debugging GCS 173

Debugging GCS

An ORE contains the following information:

Displacement Field Description

X'00 The address of the next ORE on chain

X'04' The reply ID

X'08' The address of the task block that issued the message
X'oC' The length of the message text

X'10' The message text

X'8C' The key of the issuer

X'8D! The length of the reply

X'90" The address of the reply buffer

X'94' The address of the reply ECB

A user can see if a message has not been processed by following the WQE chain,
looking for a particular message. The end of the chain is reached when the next
address in the chain is zero. If a WQE containing the message is not found, the
message has been processed by the operator. If the message requested a reply,
the user can follow the ORE chain, looking for the message and a reply. The user
may also enter the QUERY REPLY command, which will return all messages that
have outstanding replies.

VSAM

GCS supports a VSAM interface very similar to that supported by CMS. As in CMS,
GCS supports an OS/MVS macro interface and maps these requests to
VSE/VSAM. The VSAM operations are performed by the VSE/VSAM program.

Data Compression Services

The VSE/VSAM for VM Version 6 Release 1 (program number 5686-081) supports
Data Compression Services to save DASD space in large customer databases.
CMS and GCS will also support the VSE/VSAM for VM Version 6 Release 1
interface for Data Compression Services. When you use AMSERYV to create a
VSAM cluster, the COMPRESS parameter of the DEFINE function will allow record
data to be compressed when it is written and will expand data when it is read. This
parameter automatically lets VSAM know if the data is to be converted by VSAM
when it is read or written; no application program changes are necessary.

Application Migration Considerations

An existing application can take advantage of these VSAM Data Compression
Services without the need for program changes. The compression controls are in
the VSAM product and are not tied to the application code. Two things must be
done to migrate existing data sets to compressed format:

1. A’VSAM.COMPRESS.CONTROL’ KSDS compression control data set must be
defined in each catalog where compressed data will reside.

2. The existing data set CLUSTER must be redefined as COMPRESS format.

Existing data sets can be unloaded temporarily so that the cluster can be redefined
as compressed. The cluster can then be reloaded to create the compressed
database which is immediately usable by application programs.

Data Compression Services will take advantage of the CMPSC hardware
compression instruction, if available, to improve performance. Otherwise, a software
simulation of the instruction will be used to execute the actual data compression.

174 z/vM: Diagnosis Guide

Debugging GCS

Some return codes and feedback reason codes for Data Compression Services
differ between MVS/VSAM and VSE/VSAM environments. For more detailed
information on these differences, refer to the “OS/VSAM Error Codes” section of the
lz/VM: CMS Application Development Guide for Assembleff for OPEN, CLOSE, and
I/O Request error code tables.

GCS users can find error code information in the “VSAM Data Management Service
Macros” section of the |[z/VM: Group Control Syster] book.

For more information on VSE/VSAM Data Compression Services, see VSE/VSAM
Version 6 Release 1 Commands, VSE/VSAM Version 6 Release 1 User’s Guide
and Application Programming, and VSE/ESA Version 2 Release 1 Messages and
Codes.

Major differences between GCS and CMS for VSAM support include:

* AMS is not supported by GCS. Disk initialization, catalog definition, and file
definition must be performed under CMS.

» All required VSE SVC simulation is part of the GCS nucleus. Therefore, there is
no need to use a DOS segment.

* GCS includes basic support for VTAM.

* The SET SYSNAME command can only be used before the VSAM environment
is initialized in GCS.

* GCS associates open ACBs with the task that performed the open. When a task
completes, all open ACBs associated with that task are closed.

» Sharing of VSAM data in GCS is governed by VSAM and is the same as sharing
VSAM data in a VSE partition.

* GCS supports Local Shared Resources (LSR) and Deferred Write (DFR)
functions to enhance synchronous VM/VSAM processing.

This section concentrates on those areas in VSAM support that are unique to GCS
or have changed from CMS. You should have some knowledge of how VSAM
works in CMS and GCS, and the differences. More information on GCS support of
VSAM is in the [z/VM: Group Control System|book. General information on
VSE/VSAM support within VM is in the |z/VM: CMS Application Development Guide

for Assemblel.

NUCON Changes

The GCS NUCON differs from the CMS NUCON in regard to VSAM support. The
following is a summary of the changes in the NUCON for GCS support of VSAM
and other information that is still found in the NUCON.

* The communications vector table (CVT) address is still located at X'10" in the
NUCON. Neither the CMS nor GCS versions of the CVT table support all the
fields defined in the MVS/OS environment. Only those fields used individually by
the two VM subsystems are supported. However, the following are the two major
differences between the CMS and GCS versions of the CVT:

— The GCS version initializes its unsupported fields to X'0' values, while CMS
initializes unsupported fields to X'FFFFFFFF' values.

— The GCS version supported fields are a one-for-one match with MVS/OS
supported fields as to the intent of the field definition. CMS supported fields
may vary in some cases from the original intent of the MVS/OS definition.

» The VSE partition communications region (BGCOM) address, which is located at
X'4EQ' in the CMS NUCON, is located at X'14' in the GCS NUCON.

Chapter 10. Debugging GCS 175

Debugging GCS

The following fields in the BGCOM have changed for GCS:

Displacement Field Description

X'20' The address of the VSAM anchor block minus 1
X'3B' The dump option flag, which is always set
X'8C' The flag for the GETVIS area initialized

The system communications region (SYSCOM) address, which is located at X'4E4'
in the CMS NUCON, is at X'80' in the GCS NUCON.

The following fields in the SYSCOM have changed for GCS:

Displacement Field Description
X'2F' The XA hardware flag, which is now set

VAD Information

Boundary Box

The VTAM/VSAM data block (VAD) supports VSAM on GCS. This data block
resides in the first 64 KB segment of private storage in the GCS nucleus, the
address of which can be found in the GCS nucleus load map. The VAD contains
key addresses and other data relevant to running of VTAM and VSAM in GCS. This
includes the addresses of the VSAM and BAM segments, the addresses of the
VTAM OPEN, CLOSE, and CBMM routines, and pointers to the VSAM work areas
chain, open ACBs list, and DOSCB chain.

The VAD contains the following information:

Displacement Field Description

X'04' The address of the first VSAM work area
X'08' The address of the start of the VSAM segment
X'10' The address of the start of the BAM segment
X'18' The address of the first DOSCB

X'1C' The addresses of the VTAM routines

X'28' The address of the VSE transient area

X'30"' The address of the VSE lock table

X'34' The address of the simulated VSE TCB

X'38' The address of the VSE ppsave area

X'3C' The address of the VSE LTA save area

X'40' The number of DOSCBs in effect

X'88' The address of the list of open ACBs

X'8C' The length of the open ACBs list

X'90" The address of VSAM VSRT table

Usage

The boundary box (BBOX), which normally shows the bounds of the partition in
VSE, shows the bounds of a 16 MB virtual machine instead. Thus, all validity
checks made by VSE/VSAM will be successful. GCS has its own address validation
scheme, which is called before giving control to GCS/VSAM.

VSAM Anchor Block

In GCS, the anchor block contains the addresses of the VSAM dynamic assign
table, VSAM AMCB table, VSAM OAL (OPEN ACB) table, Data Compression
Services root block pointer, Data Compression Services gate word, and a reserved
area for VSAM use. It does not contain the address of modules that are

176 z/vM: Diagnosis Guide

Debugging GCS

CDLOADed, and it does not mark the boundary between GETVIS storage and
partition storage, as CMS does. The VSAM anchor block is pointed to by the

BGCOM.

VTAM/VSAM Work Areas

A VTAM/VSAM work area (VIPWORK) is established for each GCS task running
VTAM/VSAM. The work areas are chained together with the newest task VIPWORK
added to the beginning of the chain. VIPWORKSs are removed from the chain when

their related tasks end.

To find the VIPWORK:

* Locate the address of the VAD in the GCS nucleus load map
* Locate the address of the first VIPWORK at VAD + X'04'
* The address of the next VIPWORK is at VIPWORK + X'50'.

The VIPWORK contains the following information:

Displacement

X'50'
X'54'
X'568'

X'5C'
X'5E'
X'7E'

X'80'
X'BC'
X'Fo0

Helpful Hints for VSAM debugging

Field Description

The address of the next VIPWORK

The address of the previous VIPWORK

The address of the temporary OPEN/CLOSE ACB
list

The size of the temporary OPEN/CLOSE ACB list
The task ID

Flags

Byte Field Description

1XXX XXXX PSW condition code = 0
X1XX XXXX PSW condition code = 1
XX1X XXXX PSW condition code = 2

The save area for the caller’s registers
The VIP entry caller return address
The DOS return code to the user

The following are GCS commands and macros you can use to get information
about the state of the system at the current time.

QUERY SYSNAMES
Displays the names of the standard saved systems or system
names established through the SET SYSNAME command.

Without any operands specified, the current file definitions that were
defined by the DLBL command are displayed.

DLBL

SHOwWCB

TESTCB

IDUMP

A macro that returns the fields of a specified control block within

A macro that tests the values in the fields of a specified control
block within VSAM.

A VSAM IDUMP macro supported by GCS. GCS converts the
request to an SDUMP macro for processing.

Chapter 10. Debugging GCS 177

Debugging GCS

Debugging Data Compression Errors

After expanding a string of data, you may notice unexpected characters at the end
of the string. To correct this, you must check the CMPSC_BITNUM bit in the
CMPSC_DICTADDR_BYTES field of the CSRYCMPS area after a call to Data
Compression Services. If this bit is on, you must add 1 to the length of the source
area before calling Data Compression Services to expand your data. To test this bit,
use a TM instruction.

Some return codes and feedback reason codes for Data Compression Services
differ between MVS/VSAM and VSE/VSAM environments. For more detailed
information on these differences, refer to the “OS/VSAM Error Codes” section of the
lz/VM: CMS Application Development Guide for Assemblef for OPEN, CLOSE, and
I/0 Request error code tables.

GCS users can find error code information in the “WSAM Data Management Service
Macros” section of the |z/VM: Group Control System,

For more information on VSE/VSAM Data Compression Services, see VSE/VSAM
Version 6 Release 1 Commands, VSE/VSAM Version 6 Release 1 User’s Guide
and Application Programming, and VSE/ESA Version 2 Release 1 Messages and
Codes.

An Example of Control and Data Flow in GCS

The following is an example of the flow of a VTAM command that is entered by an
application program. The diagram, shown in [Figure 13| describes the configuration
of a sample GCS group which contains five virtual machines:

* VTAM

+ RSCS

* NetView

* An application (APPL)
* The recovery machine.

178 z/vM: Diagnosis Guide

Debugging GCS

Subsystem
(VTAM)

Read/Write Storage

GCS Supervisor

VIR|N|A|R
T S|E|P|E
A(C | T|P|C
M|sS| Vv|L|O
I Vv

E E

w R

Y

CP

Figure 13. Sample GCS Group

A problem state application (APPL), running in its own virtual machine, issues the
VTAM SEND macro. The VTAM SEND macro branches into an entry point in the
VTAM shared segment. This entry point is filled in by VTAM when the application
opened an ACB. The VTAM code, residing in the shared segment, issues the GCS
AUTHCALL macro to enter another VTAM entry point in supervisor state. Now that
the code is running in supervisor state, VTAM moves the data into common storage
and issues a GCS SCHEDEX macro to signal the VTAM virtual machine in the
group. The SCHEDEX function uses the CP signal system service to signal the
VTAM virtual machine.

When CP dispatches the VTAM virtual machine, the GCS IUCV interrupt handler
receives control to process the interrupt from the signal system service. The GCS
IUCV interrupt handler passes control to a GCS module which schedules an
asynchronous exit to run on a VTAM task, which may directly access the data in
common storage. When that task is dispatched by the GCS dispatcher, it issues a
GENIO STARTR to start the send on the virtual VTAM device. This must be done
from the VTAM virtual machine because all VTAM GENIO devices are owned by the
VTAM virtual machine. GENIO later receives a device end condition and schedules
an 1/O exit on the VTAM virtual machine, indicating the success of the operation.

Assuming the operation was successful and a response is required, the VTAM
virtual machine receives an attention interrupt from the GENIO device. The VTAM
virtual machine issues a GCS SCHEDEX to notify the application that issued the
SEND of the response. SCHEDEX again uses the signal system service to
schedule an exit (provided by VTAM) on the applications task that issued the
SEND. The GCS Dispatcher then runs the VTAM exit on the applications task, and
the exit informs the application through an interface provided by VTAM, completing
the cycle for that SNA SEND.

Chapter 10. Debugging GCS 179

180 z/VvM: Diagnosis Guide

Chapter 11. Debugging TSAF

The three ways that you can collect error information for problem diagnosis within

Transparent Services Access Facility (TSAF) are described in this chapter. They

are:

+ Using console logs, described in [‘Using the Console Log” on page 182]

« Using dumps, described in ['Using TSAF Dumps to Diagnose Problems” on page|
182

« Using system trace data, described in ['Using System Trace Data to Diagnose|
[Problems” on page 185

In addition, [“Interactive Service Queries” on page 187|describes how the TSAF
QUERY command can also provide you with problem diagnosis information.

Note: The TSAF operator does not necessarily diagnose problems, especially from
the TSAF virtual machine. Dumps and system trace data are usually used by
a system programmer or whoever is responsible for diagnosing system
problems.

Summary of Steps to Follow When a TSAF Abend Occurs

When a TSAF abend occurs, you should do the following:
1. Collect information about the error.

» Save the console log or spooled console output from the TSAF virtual
machine

» Save and process any dumps that TSAF produces

When an abend occurs in TSAF, either because TSAF issued an abend or
because a TSAF or CMS operation caused a program exception, TSAF
produces a dump through the CP VMDUMP command described in the [z/VM]
[CP Commands and Utilities Referencd. CP sends the dump to TSAF’s virtual
reader.

* Save any system TRFILE that contains TSAF data.
2. Collect other types of information about system status, such as:
» Status of real and virtual devices that TSAF is using

» System load at the time of the error on any systems using TSAF and the
status of each system (for example, did another system abend?)

* Types of applications that are using TSAF at the time and any information
about them

» Physical connection configuration of the systems in use.
3. Recover from the abend to continue processing.

After TSAF creates a dump, it issues the LOAD PSW (LPSW) instruction. If
TSAF is not invoked from the PROFILE EXEC, you must restart the TSAF
virtual machine.

[z/VM: Other Components Messages and Coded lists the TSAF abend codes and
their causes.

© Copyright IBM Corp. 1991, 2005 181

Debugging TSAF

Using the Console Log

TSAF provides informational messages, as well as error messages, that may help
you with problem determination. To keep track of the console messages, enter:

spool console start to userid

where userid can be the user ID of the TSAF virtual machine or another virtual
machine user ID to whom you want TSAF to send the console log. You may want to
add this to TSAF’s PROFILE EXEC so that a console log is always created.

To close the console log, enter:
spool console close

The log of messages received is sent to the specified user ID. See
|Commands and Utilities Reference for more information on the SPOOL command.

TSAF provides additional information at the time of an abend to help you diagnose
the problem. The console log contains information about the abend, such as:

* Abend code
* Program old PSW
» Contents of the general purpose registers.

TSAF also attempts to determine the displacement of the module in which the
abend occurred and the displacement of the calling module.

Figure 14|shows some of the messages that TSAF may issue in response to an
abend condition:

ATSCAC999T TSAF system error

ATSCABO171 Abend code ATS999 at 022730

ATSCABO18I Program old PSW is FFEOO2FF 40022730

GPRO-7 00022FFC 000003E7 00022FDA 00052BCO 00208080 00020C58 0033E811 00000001
GPR8-F 7F3B78AF 603C0000 00020B64 00022D6F 50021D70 00022B48 40022718 00023FBO
ATSCABO19I Abend modifier is ATSCAC

ATSCABO21I Failure at offset 0AO6 in module ATSCAC dated 86.020

ATSCAB022I Called from offset 04B4 in module ATSSCN dated 86.078

ATSCABO231 VMDUMP ATSCAB*ATSCAB1 05/28/86 16:02:06 taken

Figure 14. Sample TSAF Console Log

Using TSAF Dumps to Diagnose Problems

You can use the Dump Viewing Facility to collect and diagnose problem data for the
TSAF virtual machine. The console listing, as described in[‘Using the Console Log,]
may help you diagnose problems without using dumps.

These steps describe how to use dumps to diagnose TSAF problems:

1. Create a TSAF Dump Viewing Facility map, if it does not already exist
Create the TSAF dump

Process it

Diagnose it

Display it.

ok

The sections that follow describe how to use the Dump Viewing Facility to perform
this process.

182 z/vM: Diagnosis Guide

Debugging TSAF

Creating the TSAF Map

Note: You only need to do this step when a new CMS nucleus or TSAF module is
built.

When a new CMS nucleus or TSAF module is built, enter the Dump Viewing Facility
MAP command to compress the TSAF load map:

map cmsnuc map fm tsaf map fm (tsaf

The default names for the load maps are:
* TSAF MAP for the map source file
* CMSNUC MAP for the input CMS nucleus load map

 TSAFDVF MAP for the compressed map file, which you create using the MAP
command.

Note: If you do not have the compressed map file, the power of the Dump Viewing
Facility, which allows for diagnosis with dumps, is greatly reduced. For
instance, without the map you cannot locate the TSAF modules by name.

For more information, see the |z/VM: Dump Viewing Facility| book.

Creating a TSAF Dump

The TSAF virtual machine creates its own dumps. The dump goes to the reader of
the TSAF virtual machine. Because the TSAF virtual machine is not set up to
process dumps, you need to transfer the dump file to the appropriate virtual
machine.

If a dump of the TSAF virtual machine is necessary and the TSAF virtual machine
did not abend, you can enter the VMDUMP command from the TSAF virtual
machine console.

#cp vmdump 0-end system format tsaf

This CP VMDUMP command will dump the issuer’s virtual storage contents from
address 0 to the last address of storage and send it to the user ID designated as
the dump receiver. This user ID is specified by the DUMP operand of the
SYSTEM_USERIDS statement in the system configuration file. TSAF is the format
type of the dump. The |z/VM: CP Commands and Utilities Referencd has more
information about the VMDUMP command.

Processing a TSAF Dump

After the TSAF virtual machine creates a dump, load the dump onto disk. To load
the dump, enter the following command:

dumpload

After you have loaded the dump onto a disk, append the map to the end of the
dump by using the Dump Viewing Facility ADDMAP command:

addmap tsafdvf map a dumpname *

See the |z_/!M Dump Viewing Facilityl book for more information on the ADDMAP
command, and see the [z/VM: CP Commands and Utilities Referencd for more
information about the DUMPLOAD utility.

Chapter 11. Debugging TSAF 183

Debugging TSAF

Diagnosing a TSAF Dump

When you process a dump, a symptom record is generated. The symptom record
helps you find out why TSAF created the dump. The symptom record includes:

* Information about the system environment at the time of the dump

* The symptom string that contains the following component-related symptoms:
The error code

The ID of the failing component

The ID of the failing module

The register and PSW contents.

When you use the Dump Viewing Facility DUMPSCAN command, the TSAF
symptom record extraction routine updates the symptom record. You can use a
version of the TRACE subcommand, provided specifically for TSAF, to format TSAF
trace entries.

Note: TRACE is normally available only for CP dumps.

Displaying the TSAF Dump Information

The FDISPLAY subcommand of the DUMPSCAN command displays data control
blocks, tables, and arrays important to the TSAF virtual machine. You can get
information about the following by invoking different FDISPLAY parameters:

* Path array (PATH)

» Service table (SERVICE)

+ Collection control block (COLLECT)

* Resource table (RESOURCE)

* Neighbor table (NEIGHBOR)

* Routing array (ROUTING)

* Link definition array (LINKDEF)

* Link control blocks (LINKCTL with types APPC, BSC, CTCA, ELAN, TLAN).

See the |[z/VM: Dump Viewing Facility|book for a complete listing of FDISPLAY
parameters.

Formatting and Displaying Trace Records in a Dump

TSAF maintains an internal trace table within the TSAF virtual machine. You can
use the TRACE subcommand of DUMPSCAN to format and display trace records
from the TSAF internal trace table. By using the HEX or FORMAT parameters, you
can display the trace table entries in a hexadecimal display or a formatted display.

You can scroll back and forth through the formatted or hexadecimal output by using
the DUMPSCAN subcommands FORWARD and BACKWARD.

Printing a TSAF Dump

If you want a listing of the dump, you can print one. The Dump Viewing Facility
PRTDUMP command prints the dump and symptom record that DUMPLOAD
processed. The output you get consists of the following:

* A symptom record

* A dump in hexadecimal (no special formatting)
* Appended load maps

» Contents of the registers and the PSW.

184 z/vM: Diagnosis Guide

Debugging TSAF

See the [z/VM: Dump Viewing Facilitylbook for more information on the PRTDUMP
command.

Because of the recommended size of the TSAF virtual machine, the dump could be
quite large.

Using System Trace Data to Diagnose Problems

While maintaining an internal trace table, the TSAF virtual machine can write trace
entries to the system TRFILE. You can use the Dump Viewing Facility to format and
display these trace table entries.

Setting External Tracing

The TRSAVE command specifies where you want to save the data. The
TRSOURCE command controls the collection of the TSAF information. This
information helps with problem determination. The TSAF SET ETRACE command
lets you enable or disable external tracing for the TSAF virtual machine. You can
trace data on specific links to the TSAF virtual machine. You can also trace data for
other virtual machines (user IDs) that have established an APPC/VM path through
the TSAF virtual machine.

To be sure that all trace data is recorded, enter the TRSOURCE command before
issuing the SET ETRACE command. The users who enter the TRSOURCE
command must have a Class C privilege user ID. In many locations, the TSAF
virtual machine does not have the privilege class to issue the TRSOURCE
command. For this reason, you may need to enter the command from another
virtual machine that has authority to do so. *

To activate TRSOURCE for TSAF records only and to pass blocks of trace data to
CP, enter:
trsource id tsafid type gt block for user userid

trsave for id tsafid
trsource enable id tsafid

tsafid is the trace identifier, and userid is the TSAF virtual machine user ID.

To activate TRSOURCE for TSAF records only and to pass individual records to CP,
enter:
trsource id tsafid type gt event for user userid

trsave for id tsafid
trsource enable id tsafid

After you have entered the TRSOURCE command, you can begin to collect TSAF
trace records. Enter the following from the TSAF virtual machine console:

set etrace on

When you set external tracing on, certain internal TSAF trace records are written
externally to a system trace file (TRFILE). A complete description of the SET
ETRACE command is in thez/VM: Connectivity| book.

To end TSAF trace record generation, enter:
set etrace off

7. Privilege class is defined in the directory entry for the user ID.

Chapter 11. Debugging TSAF 185

Debugging TSAF

To end TRSOURCE processing, enter:
trsource disable id tsafid

When you enter this command, the output data is stored as a system trace file
(TRFILE).

To delete the trace ID, enter:
trsource drop id tsafid

For more specific information about the TRSOURCE and TRSAVE commands, see
thelz/VM: CP Commands and Ulilities Reference book.

Viewing TSAF Trace Entries

You can use the CP TRACERED utility to format and print or view the trace entries.
The DUMPSCAN command displays the external trace entries. In order to use the

TRACE subcommand, the TSAF trace formatting routines must be on an accessed
disk.

For information about the TRACERED utility, see the [z/VM: CP Commands and
[Utilities Reference],

For information about the DUMPSCAN command and the TRACE subcommand,
see the [z/VM: Dump Viewing Facility| book.

Trace Table Entry Format for TSAF

The trace table entries vary in length and follow the format described below. The
length fields are 2 bytes long and may be any number from 0 to 32767. The length
and data fields are optional data fields.

A trace table entry looks like the following:

|Iength(1) |data(1) | | length(n) |data(n) |Trailer record

The trailer record format looks like the following:

Clock (STCK format) |Characters 4 through |Trace ID Data area X'EOOE!
6 of module name code length

The lengths associated with these fields are:

* Clock (STCK format)—8 bytes

* Characters 4 through 6 of module name—3 bytes
* Trace ID code—2 bytes

* Data area length—2 bytes

* ‘EOOE’x—2 bytes.

Note: Module entries and module exits do not have length fields associated with
each data field. Module entries and exits do, however, have the data area
length in the trailer record.

Module entry trace records appear only in the internal trace table. TSAF identifies
these records by setting bit 15 of the trace identifier code to 1. The data for a
module entry is in the parameter list used during the module call.

186 z/vM: Diagnosis Guide

Debugging TSAF

Module exit trace records also appear only in the internal trace table. TSAF
identifies these records by setting bit 14 of the trace identifier code to 1. The data
for a module exit is in registers 14 and 15 at the time of the module exit.

Interactive Service Queries

The TSAF QUERY command, issued from the TSAF virtual machine, can give you
more information to help you diagnose problems. The TSAF QUERY command
gives you data about the TSAF configuration when the TSAF virtual machine is
running:

QUERY COLLECT displays the processor names that are currently in the TSAF
collection.

QUERY ETRACE displays the current setting of the external tracing.

QUERY GATEWAY displays the current list of gateways defined in the TSAF
collection.

QUERY LINK displays information about the links that TSAF currently has
including the neighboring processor name that the link is connected to.

QUERY RESOURCE displays the current list of global resources in the
collection.

QUERY ROUTE displays the route information at the node where the command
was issued.

QUERY STATUS displays the current information about the correlation of other
TSAF virtual machines in the collection.

See the [z/VM: Connectivity| book for more specific information about the TSAF
QUERY command.

Chapter 11. Debugging TSAF 187

188 z/vM: Diagnosis Guide

Chapter 12. Debugging AVS

Effective problem diagnosis for APPC/VM VTAM Support (AVS) is a process
consisting of:

* Analyzing the dump

* Analyzing system trace data

» Using the AVS QUERY command

* Receiving an AVS abend response.

Each of the above steps will be addressed individually.
Note: The AVS operator does not always diagnose problems. In fact, dumps and

system trace data are often handled by a system programmer or other
person specifically responsible for diagnosing system problems.

Using AVS Dumps to Diagnose Problems

The Dump Viewing Facility analyzes dumps and tracks problems in z/VM. You can
use the Dump Viewing Facility to collect and diagnose problem data for the AVS
virtual machine. Because AVS runs in a GCS group, you can use all GCS and AVS
subcommands of DUMPSCAN.

The steps used to diagnose problems using dumps are:
1. Obtain a GCS load map, if one doesn’t already exist
2. Obtain the AVS dump

3. Process the AVS dump

4. Use DUMPSCAN to diagnose the AVS dump.

Obtaining the GCS Load Map

Note: This step is not necessary every time you create a dump; however, it is
required when a new GCS nucleus is built.

When you build a new GCS nucleus, enter the MAP command of the Dump
Viewing Facility to compress the GCS load map into a format that the Dump
Viewing Facility can use:

map gcsnuc map fm (gcs

The default map file is GCSDVF MAP. See the |z/VM: Dump Viewing Facility| book
for more information on the MAP command.

If you do not have the GCS load map, the GCS subcommands for the DUMPSCAN
command are affected. The AVS subcommands for the DUMPSCAN command are
unaffected.

Creating an AVS Dump

When a problem occurs because of an abend, or when an abnormal condition is
detected, AVS produces one of the following:

* A dump when AVS abends

* A problem dump when the system detects an error but does not cause AVS to
abend.

© Copyright IBM Corp. 1991, 2005 189

Debugging AVS

The problem dump takes a snapshot of the system to try to capture the problem. An
informational message appearing at the operator console corresponds to a
message number generated with the problem dump report. DIAGNOSE code X'94'
(VMDUMP) is used to take the problem dump.

The maximum number of AVS problem dumps that can be taken during each AVS
session is determined by the value set for MAXPROBD in the AGWTUN
ASSEMBLE file. The default is 20. This, and other IBM-supplied default values
contained in AGWTUN ASSEMBLE can be changed by a system programmer. For
information about modifying this file, see the [z/VM: Connectivity| book.

If you want to create a dump for the AVS machine, enter:

gdump 0-end format avs dss

This Group Control System GDUMP command will dump the issuer’s virtual storage
contents, from address 0 to the last address of virtual storage, and send it to the
issuer’s virtual reader. AVS is the format type of the dump. The dump will also
include any discontiguous saved segments that the virtual machine may be using.
The [z/VM: Group Control System|book contains more information about the
GDUMP command.

Processing an AVS Dump

Diagnosing an

To load any AVS virtual machine dump directly onto a disk, enter:
dumpload

After you have loaded the dump onto the disk, append the map to the end of the
dump by using the Dump Viewing Facility ADDMAP command:

addmap gcsdvf map a dumpname *

See the [z/VM: Dump Viewing Facility|book for more information on the ADDMAP
command, and see the [z/VM: CP Commands and Utilities Reference for more
information about the DUMPLOAD utility.

AVS Dump

When you process a dump, a symptom record is generated. The symptom record
helps you discover why AVS created the dump. The symptom record includes:

* Information about the system environment at the time of the dump
* The symptom string that contains the following component-related symptoms:
— The error code
— The ID of the failing component
— The ID of the failing module
— Register and PSW contents.

When you use the Dump Viewing Facility DUMPSCAN command, the AVS
symptom record extraction routine updates the symptom record. You can use a
version of the TRACE subcommand, provided specifically for AVS, to format AVS
trace entries.

Displaying the AVS Dump Information with DUMPSCAN

The GDISPLAY subcommand of DUMPSCAN displays data control blocks and
addresses important to the AVS virtual machine. You can get information about the
following by invoking different GDISPLAY parameters:

» Conversation block (CVB)

190 z/VvM: Diagnosis Guide

Debugging AVS

* Global control block (GCB)

* Gateway block (GWB)

» Gateway parameters (GWBPTRS)
* Module names (MAPA)

* Module addresses (MAPN)

* Remote LU block (RLU)

» Subtask control block (SCB)

* Scheduling global block (SGB).

Because AVS runs in a GCS group, you can use other DUMPSCAN subcommands
to further examine these parts of the AVS dump:

IUCVv All entries in the IUCV path table.

TACTIVE The task’s active program list.

TLOADL The task’s load list.

TSAB The subpool map and chain header of a task.

VMLOADL Information about all programs loaded in this virtual machine.

See the [z/VM: Dump Viewing Facility| book for more information.

Formatting and Displaying Trace Records in a Dump

AVS maintains an internal trace table within the AVS virtual machine. You can use
the TRACE subcommand of DUMPSCAN to format and display trace records from
the AVS internal trace table. By using the HEX or FORMAT parameters, you can
display the trace table entries in a hexadecimal display or a formatted display. See
the [z/VM: Dump Viewing Facility|book for examples of using the TRACE
subcommand and the sample outputs.

You can scroll back and forth through the formatted or hexadecimal output by using
the DUMPSCAN subcommands FORWARD and BACKWARD.

Using System Trace Data to Diagnose Problems

While maintaining an internal trace table, the AVS virtual machine can also write
trace entries to the system trace file (TRFILE). You can use the Dump Viewing
Facility to format and display these trace table entries.

Setting Internal Tracing

When the AGW START command is entered, internal tracing is set as if you
entered an AGW SET ITRACE ALL ON command. Internal tracing information is
written to an internal wraparound table in the AVS virtual machine.

See the description of the AGW SET ITRACE command is in the|z/VM: Connectivity|
book for information about tracing events for a gateway or for stopping and
restarting tracing.

Setting External Tracing

The TRSAVE command specifies where you want to save trace information. The
TRSOURCE command controls the collection of the data. This information helps
with problem determination. The AGW SET ETRACE command lets you enable or
disable external tracing for the AVS virtual machine. External tracing will not be in
effect unless you also have internal tracing set on. The type of external tracing you

Chapter 12. Debugging AvS 191

Debugging AVS

receive will be the same as the type of internal tracing you requested. To be sure
that all trace data is recorded, enter the TRSOURCE command before issuing the
AGW SET ETRACE command. The users who enter the TRSOURCE command
must have a class C privilege user ID. Because the AVS virtual machine is not set
up to diagnose problems, only one authorized user at a time may enter the
TRSOURCE command. &

To activate TRSOURCE for AVS records only and to pass blocks of trace data to
CP, enter:

trsource id avsid type gt block for user userid
trsource enable id avsid

avsid is the trace identifier, and userid is the AVS virtual machine user ID.

To activate TRSOURCE for AVS records only and to pass individual records to CP,
enter:

trsource id avsid type gt event for user userid
trsource enable id avsid

After you have entered the TRSOURCE command, you can begin to collect AVS
trace records. Enter the following from the AVS virtual machine:

etrace gtrace
agw set etrace on

When you have internal and external tracing set on, AVS trace records are written
externally to a system trace file. The ETRACE command is described in the
|Group Control Systen book. A complete description of the AVS SET ETRACE
command is in the [z/VM: Connectivity|book.

To end TRSOURCE processing, enter:
trsource disable id avsid

When you enter this command, the output data is stored as a system trace file
(TRFILE). For more specific information about the TRSOURCE command, see the
lz/VM: CP Commands and Ulilities Reference,

Viewing AVS Trace Entries

You can use the CP TRACERED utility to format and print or view the trace entries.
The DUMPSCAN command also displays the external trace entries. In order to use
the TRACE subcommand, the AVS trace formatting routines must be on an
accessed disk.

For information about the DUMPSCAN command and the TRACE subcommand,
see the|z/VM: Dump Viewing Facility| book.

For information about the TRACERED utility, see the |z/VM: CP Commands and
Utilities Referencel

Trace Table Entry Format for AVS

AVS trace table entries vary in length and follow the format described below. The
length fields are 1 byte long and may contain any number from 0 to 236. An AVS
trace entry cannot exceed 255 bytes. The length and data fields are optional. A
trace entry table looks like the following:

8. The privilege class is defined in the directory entry for the user ID.

192 zvM: Diagnosis Guide

Debugging AVS

|Iength(1) | data(1) | | length(n) | data(n) | Trailer record |

The trailer record format looks like the following:

Clock (STCK format) |Characters 4 through |Trace ID Data area X'EOOE'
6 of module name code length

The lengths associated with these fields are:

* The clock (STCK format)—8 bytes

» Characters 4 through 6 of the module name—3 bytes
* The trace ID code—2 bytes

* The data area length—2 bytes

* X'EOOE'—2 bytes.

Getting Information about Trace Entries
You can use the CP QUERY command to obtain information about traces and trace
entries. For example,

* QUERY TRFILES displays detailed information about one or more system trace
files and counts the number of files that match your specified criteria.

* QUERY TRSAVE displays the destination of the traces.
* QUERY TRSOURCE displays the status of traces defined by TRSOURCE.

For information about the QUERY command, see the [z/VM: CP Commands and
[Utilities Referenced,

Interactive Service Queries

The AVS QUERY command provides information about the operating AVS virtual
machine.

 AGW QUERY ALL displays all of the current information about various settings
and conditions of AVS.

*« AGW QUERY CNOS displays the contention winner/contention loser information
for the gateways.

*+ AGW QUERY CONYV displays information about the current conversations.
« AGW QUERY ETRACE displays the current setting of the external tracing.

« AGW QUERY GATEWAY displays the status of all gateways that are currently in
the collection.

+ AGW QUERY ITRACE displays the current setting of the internal tracing.

« AGW QUERY USERID displays the remote LU, remote user ID, and local user
ID.

See the |z/VM: Connectivity| book for more information about this command.

Summary of Steps to Follow When an AVS Abend Occurs

When an AVS abend occurs, follow these procedures:
* Collect information about the error.

— Print the console log for the time that the error occurred. Save the console
sheet or spooled console output from the AVS virtual machine.

Chapter 12. Debugging AVS 193

Debugging AVS

194

Save and process any dumps that AVS produces.

Enter the MAP command to convert the GCS load map to a format that allows
the Dump Viewing Facility to append the GCS load map to the dump.

Use the DUMPLOAD utility to load the dump from a reader spool file into a
CMS dump file.

Enter the ADDMAP command to append the load map to the dump.

Enter the DUMPSCAN command with the necessary subcommands to look at
the contents of the dump.

Save any trace files that contains AVS data (described in|‘Using System

[Trace Data to Diagnose Problems” on page 191).

» Collect system status information. The following information can help better
determine problems:

The system load at the time of failure on any systems using AVS and the
status of each system (for example, did another system abend?).

The types of applications that are using AVS at the time, and any information
about them.

The physical connection configuration of the systems in use.

* Recover from the abend to continue processing.

When an abend occurs in AVS, either because AVS issued an ABEND or
because an AVS or GCS operation caused a program exception, AVS
produces a dump by way of DIAGNOSE code X'94' (described in
[Programming Services).

[z/VM: Other Components Messages and Coded lists the various AVS abend codes

and their causes.

z/NM: Diagnosis Guide

Appendix A. Problem-Specific Checklists

After you determine the general nature of your problem, find the checklist
associated with that problem. Then, collect the information stated in the checklist
before you call IBM.

CP Abend Checklist

Collect the following information before calling IBM:

The last action performed by CP before the abend occurred

Any output generated that demonstrates the problem

Any messages and return codes received

A CP restart or snapdump

A CP abend dump

A CP nucleus loadmap

If possible, the program label or the address at which the abend occurred.

N o o s~ N~

CMS Abend Checklist

Collect the following information before calling IBM:

The last action performed by CMS before the abend occurred

Any output generated that demonstrates the problem

Any messages and return codes received

At a minimum, the contents of the PSW and the general and control registers
A dump of the virtual machine containing CMS

A CMS nucleus loadmap

If possible, the program label or the address at which the abend occurred.

GCS Abend Checklist

Collect the following information before calling IBM:

1. The identity of the virtual machine in the GCS virtual machine group that
experienced the abend

A dump of the virtual machine that terminated abnormally

Any output generated that demonstrates the problem

Any messages and return codes received

A GCS nucleus loadmap

If possible, the program label or the address at which the abend occurred.

N o o~ 0D~

S o < A

RSCS Abend Checklist

Collect the following information before calling IBM:

The last action performed before the abend in RSCS occurred
Any messages and return codes received

The RSCS console log

An RSCS abend dump

The RSCS nucleus loadmap (RSCS Version 1)

The RSCS link edit map (RSCS Version 2 or higher)

I A

© Copyright IBM Corp. 1991, 2005 195

Problem-Specific Checklists

7. If possible, the program label or the address at which the abend occurred.

CP Wait State Checklist

Collect the following information before calling IBM:

1. The last action performed by CP before the wait state occurred
2. A CP restart or standalone dump

3. Any output generated that demonstrates the problem

4

. The contents of the PSW. (Take particular note of the last word of the PSW. A
CP wait state code might be stored there.)

The contents of the general registers
6. A copy of the CP internal trace table. (This accompanies the dump.)
7. If available, the wait state code.

o

Virtual Machine Wait State Checklist

Collect the following information before calling IBM:

The last action performed by the virtual machine in question
Any output generated that demonstrates the problem

Any messages and return codes received

The contents of the PSW

The contents of the general and control registers

The contents of the CSW. (Take particular note of CSW bits 32 through 47
where input/output device conditions might be noted.)

A dump of the virtual machine in question
If available, the wait state code.

ook wn =

© N

RSCS Wait State Checklist

Collect the following information before calling IBM:
1. The last action performed by the virtual machine in question
Any output generated that demonstrates the problem
Any messages and return codes received
The contents of the PSW
The contents of the general and control registers

The contents of the CSW. (Take particular note of CSW bits 32 through 47
where input/output device conditions might be noted.)

7. A dump of the RSCS virtual machine

8. The RSCS console log

9. The RSCS nucleus loadmap (RSCS Version 1)
10. The RSCS link edit map (RSCS Version 2 or higher)
11. If available, the wait state code.

oo w0

196 z/vM: Diagnosis Guide

Problem-Specific Checklists

Application Program checklist for Unexpected Output

Collect the following information before calling IBM:

1.
2.
3.

Documentation associated with the application program
Input to the program
The job control statements (JCL) included with the program.

Checklists for Performance Problems

An Infinite Loop in CP

Collect the following information before calling IBM:

1.

N o o~ DD

Any console or printed output that demonstrate the problem

A CP restart dump

The contents of the PSW

The contents of the general and control registers

The contents of storage locations from hexadecimal addresses 00 through 100
If possible, the instructions (and their addresses) that are involved in the loop

A CP nucleus loadmap—particularly the names of the modules involved in the
loop.

An Infinite Loop in a Virtual Machine
Collect the following information before calling IBM:

1.

2.
3.
4.

Any output generated that demonstrates the problem

A dump of the virtual machine in question

A CMS nucleus loadmap

If possible, the instructions (and their addresses) that are involved in the loop.

An Infinite Loop in RSCS

Collect the following information before calling IBM:

1.

N o o~ DD

Hardware Failure

Any output generated that demonstrates the problem

The RSCS nucleus loadmap (RSCS Version 1)

The RSCS link edit map (RSCS Version 2 or higher)

The RSCS console log

A trace of activity in the RSCS virtual machine

If possible, the name of the RSCS module involved

If possible and if applicable, the name of the RSCS link or line driver involved.

Collect the following information before calling IBM:

1.
2.

Any messages and return codes received
The hardware error record.

Inadequate System Parameters
Collect the following information before calling IBM:

1.
2.

Normal system parameter readings
Present system parameter readings

Appendix A. Problem-Specific Checklists 197

Problem-Specific Checklists

3. The configuration of your system’s input/output devices.

198 z/vM: Diagnosis Guide

Appendix B. GCS Control Blocks

This appendix describes the layouts of some GCS control blocks and important
fields that help you identify problems in a VM/SNA environment. The information
that is provided is enough to allow you to display the GCS areas that may be

relevant when determining the source of a problem.

This appendix describes the format and layout of:

NUCON
SIE
TBK
STBLK
SMAB
ANCH
EXTWA
SVCWA
PGMWA
VMCB

The GCS nucleus constant area (Table 5

The NUCON extension (Table 6)
The task block (Table 7]

The state block (Table 8)

The storage management block

The storage anchor block

The external interrupt handler work area
The SVC interrupt handler work area
The program interrupt work area.

The virtual machine control block (Table 14|

In all the descriptions, the field lengths are shown in hexadecimal.

NUCON—GCS Nucleus Constant Area

Table 5. Contents of the GCS Nucleus Constant Area (NUCON)

HEX

DISP NAME LENGTH DESCRIPTION

000 NUCON 1880 The nucleus constant area

000 NUCIPPSW 8 The initial program loading PSW

000 NUCRNPSW 8 The RESTART new PSW

008 NUCROPSW 8 The RESTART old PSW

010 NUCADCVT 4 The address of the OS CVT

014 NUCBGCOM 4 The address of BGCOM

018 NUCEOPSW 8 The external old PSW

020 NUCSOPSW 8 The SVC old PSW

022 NUCSOBT2 1 Byte 2 of PSW
NUCSOAS1 X'80' The first address space control bit
NUCSOAS2 X'40' The second address space control bit

024 NUCSOADR 4 The XA SVC instruction address
NUCSOA31 X'80' The AMODE SVC old PSW

028 NUCPOPSW 8 The program-check old PSW

030 NUCMOPSW 8 The machine-check old PSW

038 NUCIOPSW 8 The 1/0 old PSW

04C NUCACVT2 4 The CVT address for dump routines

054 NUCTRACE 4 The address of the table trace header

058 NUCENPSW 8 The external new PSW

060 NUCSNPSW 8 The SVC new PSW

068 NUCPNPSW 8 The program-check new PSW

070 NUCMNPSW 8 The machine-check new PSW

078 NUCINPSW 8 The 1/0 new PSW

© Copyright IBM Corp. 1991, 2005

199

GCS Control Blocks

Table 5. Contents of the GCS Nucleus Constant Area (NUCON) (continued)

HEX
DISP NAME LENGTH DESCRIPTION
080 NUCSYSCM 4 Used by VSAM
084 2 Reserved—set to zero
086 NUCEICOD 2 The external interruption code
088 1 Reserved—set to zero
089 NUCSVILC 1 The SVC ILC (XA and XC virtual machine)
08A NUCSVCN 2 The SVC interruption code (XA or XC virtual machine
08C 1 Reserved—set to zero
08D NUCPIILC 1 The program-check ILC
NUCPILC1 X'04' The program instruction length bit 1
NUCPILC2 X'02' The program instruction length bit 2
08E NUCPICOD 2 The program interruption code
090 NUCTE 4 The page fault address
090 NUCTEA 1 Reserved—set to zero
NUCTEAC X'80' The page fault is complete
091 NUCTEAA 3 The translation exception address
094 1 Reserved—set to zero
095 NUCMCNUM 1 The Monitor CALL class number
096 NUCPERCD 1 The program event recorder code
097 1 Reserved—set to zero
098 NUCPER 1 Reserved—set to zero
099 NUCPERAD 3 The program event recorder address
09C NUCEID 4 The MONITOR-CALL EID
09D NUCMTRCD 3 The MONITOR-CALL code
0AO0 NUCEXAID 1 The exception access ID
0A8 NUCMCKLA 8 The machine-check LOGOUT area
0A8 NUCTXCP 4 The exception alet
0A8 NUCCHNID 4 The channel ID
0AC NUCIOEL 1 Reserved for future use
AD NUCIOELA 3 The 1/0 extended LOGOUT pointer
0BO NUCLCL 4 The limited channel LOGOUT (ECSW)
0B8 NUCIOSID 4 The SID causing I/O interrupt
0B8 NUCIOSTY 2 The SID type
O0BA NUCIOAA 2 The 1/O device causing interrupt
The 1I/O subchannel causing INTR
0BC NUCINTP 4 The interrupt parameter
0Co LOWSAVE 96 The save area for the first 96 bytes of storage
OES8 NUCMCIC 8 The machine check interrupt code
OES8 NUCMCICO 1 MCIC byte 0
OE9 NUCMCICA 1 MCIC byte 1
NUCMCCP X'40' X1XX = channel report pending
OEA NUCMCIC2 1 MCIC byte 2
OEB NUCMCIC3 1 MCIC byte 3
OEC NUCMCIC4 1 MCIC byte 4
OED NUCMCIC5 1 MCIC byte 5
OF8 NUCFSA 4 The failing storage address
100 NUCASIT 8 The failing storage asit
120 NUCACRLG 64 The access register save area
160 NUCFPRLG 32 The floating point register save area
180 NUCGPRLG 64 The general purpose register save area
1C0O NUCECRLG 64 The extended control register save area
200 NUCVTAM 4 Reserved for VTAM
204 NUCVMID 8 The virtual machine user ID
200 z/VM: Diagnosis Guide

GCS Control Blocks

Table 5. Contents of the GCS Nucleus Constant Area (NUCON) (continued)

HEX
DISP NAME LENGTH DESCRIPTION
20C NUCLVL 4 The release/service level
20D NUCRLVL 1 The release level
20E NUCSLVL 2 The service level
210 NUCIDS 4 The signal ID/task ID
210 NUCSIGID 2 This virtual machine signal ID
212 NUCATID 2 The active task ID
214 NUCATB 4 The address of the active task
218 NUCPOST 4 The branch entry address for the post
21C NUCCTB 4 The common trace block pointer
220 NUCNPM 4 The network performance monitor
224 NUCSTOR 4 The address of common storage data
228 NUCZIT 4 The start of private storage (dump viewing facility use
only)
22C NUCAGW 4 The AGW RAS use
230 NUCVMPST 4 Reserved for VTAM
234 NUCUSER 4 Reserved for VTAM
238 NUCSAF 4 Reserved for RACF
23C NUCDUMP 4 Pointer to the dump receiver
240 NUCANCH 4 The pointer to the user anchor table
244 NUCFLAGS 1 FLAGS
NUCXCMDE X'80' XC Virtual Machine
NUCHWCMP X'40' Hardware Compression
28C NUCFEIBM 12 The component ID-dump viewing facility referenced
298 NUCABW 4 The address of the abend work area (for the dump
viewing facility)
29C NUCRSTSH1 4 The system restart save area
2A0 NUCRSTS2 4 The system restart save area
2A4 NUCRSTF 1 The system restart flags
NUCMSGR X'02' The recursion bit (message facility)
NUCRSTR X'01" The recursion bit (restart)
2A5 3 Reserved
2A8 NUCBLRSV 64 The register save area
2E8 NUCCMDLN 160 The command input line
388 NUCCMLST 536 The tokenized PLIST
5A0 NUCUPPER 4 The upper case translate table
5A4 NUCPLFID 4 The flag word used by GCTSCN
5A4 NUCPLSWT 1 The 1-byte switch used in GCTSCN
5A8 NUCCWR 4 The console write routine
5AC NUCACPF 4 The CP command PASSTHRU
5B0 NUCSCANN 4 The scan routine entry point
5B4 NUCSCNT 4 The scan routine entry point
5B8 NUCPLIST 8 The extended PLIST (untokenized)
5B8 NUCPLCMD 4 The address of the command token
5BC NUCPLBEG 4 The address of the start of argument string
5C0 NUCPLEND 4 The address of the end of argument string
5C4 NUCSIE 4 The pointer to the SIE (NUCON extension)
5C8 NUCIHCSA 8 The interrupt handler common save area
5D0 NUCSAVQ1 4 The header pointer for the interrupt handler save area
5D4 NUCSAVQ2 4 The trailer pointer for the interrupt handler save area
5D8 NUCSRPTR 4 The pointer to the system restart work area
5DC NUCDEB 4 The DEB entry to the chain address
5E0 NUCCBLKS 4 The pointer to modules known to program management

Appendix B. GCS Control Blocks 201

GCS Control Blocks

Table 5. Contents of the GCS Nucleus Constant Area (NUCON) (continued)

HEX

DISP NAME LENGTH DESCRIPTION

5E4 4 A restricted field

650 NUCFCBTB 8 The FCB anchor chain

650 NUCFCB1 4 The address of the first FCB

654 NUCFCBNM 2 The number of FCBs in the chain

658 NUCLAF 4 V(GCTLAF) AACTLKP

65C NUCERS 4 V(GCTERS) AERASE

660 NUCSTTN 4 V(GCTSTT) AESTATE

664 NUCFNS 4 V(GCTFENS) AFINIS

668 NUCFVS 4 V(FVS) AFVS

66C NUCAUD 4 V(GCTAUD) AUPDISK

670 NUCRDBUF 4 V(GCTRWBRD) GCTRWBRD

674 NUCDEVTB 4 V(DEVTAB) the address of DEVTAB

678 NUCADTS 4 V(ADTSECT) the address of ADTSECT

67C NUCDIODA 4 V(DIOSECT) the address of DIODA

680 NUCAFTS 4 V(AFTSTART) the address of AFTSTART

688 NUCTODCA 16 The timing information

688 NUCTODTT 8 The total virtual machine time

690 NUCTODDT 8 The time of day when dispatched

6A0 NUCLLNAM 4 The address of the LOADLIB name list

6A4 NUCLLDIR 4 The address of the LOADLIB directory list

6A8 NUCLLSIZ 4 The size of the LOADLIB name and directory storage

6AC NUCLLNUM 2 The number of globaled LOADLIBs

6B0 NUCXAWRK 4 The XA-mode work area

6B0 NUCMFLAG 1 The nucleus machine flag:
NUCXA X'80' 1XXXXXXX = Virtual machine is XA or XC
NUCDMPON X'40' 1X1XXXXX = Dump on switch
NUCDMPDE X'20' XX1IXXXXX = Dump default switch
NUCLCKHO X'10' XXX1XXXX = Hold common lock for dump
NUCIPOLL X'08' XXXX1XXX = IPOLL function in use
NUCNOPLL X'04' XXXXX1XX = IPOLL buffer in use
NUCDMPFM X'02' XXXXXX1X = Dump format switch
NUCSGRP X'o1' XXXXXXX1 = Single user group

6B1 NUCMASKE 1 The system enable byte

6B2 NUCMASKW 1 The STNSM/STOSM work byte

6B4 NUCLINE 4 The start of high storage

6B8 NUCAMDS80 4 Used by GCTAMODE

6BC NUCAMD7F 4 Used by GCTAMODE

6CO0 NUCMCKSA 64 The machine check work area

700 NUCGLUSA 64 The glue work area

740 NUCBESAV 4 The work area

744 NUCBER14 4 Register 14 from the branch entry
NUCBEA31 X'80' The branch entry was in AMODE 31

748 NUCFLGS 4 Flags
NUCREX31 X'80' REXXSTOR = 31

750 NUCPFPSW 8 The PSW at page fault interruption

202 z/VM: Diagnosis Guide

GCS Control Blocks

SIE—NUCON Extension

Table 6. Contents of the NUCON Extension (SIE)

HEX
DISP NAME LEN DESCRIPTION
000 SIE 328 The NUCON Extension
000 8 Eye catcher (GCTSIE)
008 SIETRQ 4 The timer request queue start
00C SIEQCB 4 The ENQ control block queue start
010 SIETTBL 4 The address of the task ID table
014 SIETBQ 4 The address of the first task block in the dispatch
queue
018 SIEAEQ 4 The address of the asynchronous exit queue
01C SIESCB 4 The pointer to the STAE control block pool
020 SIELKCOM 4 The address of the common storage lock
024 SIELKTID 2 The task ID waiting for the lock
026 SIELOCKB 1 The byte indicating whether the machine
SIELKCMB X'80' is waiting for the lock
027 SIEPM 1 The program management flag byte
SIEPMGLB X'80' Set on when the global LOADLIB command is issued
* Set off when the BLDL searches the directories
SIEPMOSR X'40' Set on when OSRUN is active
* Set off by LINK
SIEPMLDR X'20' Set on by GCTLOS for LOADADDR
028 SIEVMCBS 4 The address of the VMCB array
02C SIEVMCB 4 The address of this machine’s VMCB
030 SIESYSNM 4 The pointer to the VSAM SYSNAMES table
034 SIEPOST 4 The branch entry to POST
038 SIEGETM 4 The branch entry point to GETMAIN
03C SIEFREM 4 The branch entry point to FREEMAIN
040 SIESMAB 4 The pointer to the SMAB
044 SIECAADR 4 The address of the attention interrupt ECB
048 SIECIADR 4 The address of the I/O complete ECB
04C SIECOADR 4 The address of the console output pending ECB
050 SIECTADR 4 The address of the command tack ECB
054 SIECAECB 4 The attention interrupt ECB
058 SIECIECB 4 The 1/0 complete ECB
05C SIECOECB 4 The output pending ECB
060 SIECTECB 4 The command task ECB
064 SIECONFL 1 The console task flags
SIECRDIO TXXX XXXX A READ I/O is in progress
SIECWRIO XTXX XXXX A WRITE I/O is in progress
SIECATTP XXTX XXXX The attention pending bit
SIECOUTP XXX1 XXXX The output pending bit
SIECLEAR XXXX 1XXX Clear screen
065 SIECMDFL 3 Reserved command flags
068 SIEFCMDQ 4 The pointer to the first command input buffer
06C SIELCMDQ 4 The pointer to the last command input buffer
070 SIEFSWQE 4 The pointer to the first WQE buffer on the queue
074 SIELSWQE 4 The pointer to the last WQE buffer on the queue
078 SIEFSORE 4 The pointer to the first ORE buffer on the queue
07C SIELSORE 4 The pointer to the last ORE buffer on the queue
080 SIECCWS 16 Console CCWS
080 SIECCW1 8 The first CCW
080 SIECCW1C 1 The CCW command code

Appendix B. GCS Control Blocks 203

GCS Control Blocks

Table 6. Contents of the NUCON Extension (SIE) (continued)

HEX
DISP NAME LEN DESCRIPTION
081 SIECCW1A 3 The data address
084 SIECCWI1F 1 A flag byte
085 SIECCW1N 1 An unused flag byte
086 SIECCW1B 2 The byte count
088 SIECCW2 8 The second CCW
088 SIECCW2C 1 The CCW command code
089 SIECCW2A 3 The data address
08C SIECCW2F 1 A flag byte
08D SIECCW2N 1 An unused flag byte
08E SIECCW2B 2 The byte count
090 SIEIDORE 13 The bit string for ORE IDs
09D SIELSTID 1 The last ID used for assigning
09E 2 Reserved
0AO SIETAB 4 The trace anchor block pointer
0A4 SIENUCX 4 The pointer to the nucleus extension control block chain
0A8 SIEBVSAM 4 The beginning of the VSAM shared segment
0AC SIEEVSAM 4 The end of the VSAM shared segment
0BO SIEBBAM 4 The beginning of the BAM shared segment
0B4 SIEEBAM 4 The end of the BAM shared segment
0B8 SIEIUCAB 4 The IUCV anchor block
0BC SIESSPTH 2 The signal services path (path ID)
OBE RESERVED 2 Reserved
0Co SIEFREST 4 The start of available common free storage
0C4 SIEZNR 4 The start of available private free storage
(0]0F:] SIEVMSIZ 4 The size of this virtual machine
0CC SIETQE 4 The address of the TQE pool
0DO RESERVED 4 Reserved for future use
0D4 SIEIFLAG 1 Initialization flags
SIEPGFT X'80' Page faults initialized
SIEAUSER X'02' ON means the virtual machine is authorized
0D5 SIETIME 8 The system save time
oDD SIEDATE 8 The system save date
0E5 SIECRIT 1 Critical bits
SIESMGMT X'80' Storage management
SIESTERM X'40' System termination
SIEINIT X'20' Initialization
SIESVC X'10' SVC handler
SIEFSACC X'08' File system
SIEFSERS X'04' File system
SIEFSFNS X'02' File system
SIEFSWRB X'01' File system
OE8 SIEREDRN 4 The highest ready task level
OEC SIEDSP 1
SIEDSTOP X'80' The priority change bit
OF0 SIESLICE 8 The time slice in microseconds
OF8 SIESDXBR 4 “V(GCTSDXBR)” branch entry to SCHEDEX
OFC SIESAV 4 “V(GCTSAR)” save area for branch entry
100 SIEIUS 4 “V(GCTIUSBR)” branch entry to IUCV
104 SIEGENIO 4 “V(GCTGIMSB)” branch entry to GENIO START/R
108 SIESATB 4 Saved active task block address
10C SIESATID 2 Saved active task block ID
10E SIETRSP 1 Trace service points
204 z/VM: Diagnosis Guide

GCS Control Blocks

Table 6. Contents of the NUCON Extension (SIE) (continued)

HEX
DISP NAME LEN DESCRIPTION
SIETRBRW X'80' Trace branch entries to WAIT
SIETRBRS X'40' Trace branch entries to SCHEDEX
SIETRBRI X'20' Trace branch entries to IUCVCOM
SIETRBRV X'10' Trace branch entries to VALIDATE
SIETRBRP X'08' Trace branch entries to POST
10F SIETRSAV 1 Save trace points
110 SIEASYID 4 “V(SYID)” pointer to the SYID
114 SIEAEXEC 4 “V(GCTREXBR)” pointer to REXX
118 SIEAEXCO 4 “V(GCTREXV2)” pointer to EXECCOMM
11C SIEAEXGC 4 “V(GCTREXGC)” pointer to GETCOMM
120 SIEAEXSC 4 “V(GCTREXSC)” pointer to SETCOMM
124 SIEMOD 4 “V(GCTMOD):” pointer to GCTMOD
128 SIENTPRI 4 The address of the first Private Level Name/Token pair
12C SIEFREHC 4 The address of free-high common storage
130 SIEINTAT 4 The address of active task at time of interrupt
134 SIESAI 4 Save area for branch entry
138 SIEIATID 2 The active task id at interrupt
13C SIEPFECB 4 The address of active page fault ECBs
140 SIEPFFRE 4 The address of free page fault ECBs
144 SIEPFLST 4 The address of last active page fault ECB

TBK—Task Block

Table 7. Contents of Task Blocks

HEX
DISP NAME LEN DESCRIPTION
000 TBK 320 The task block
000 TBKUP 4 The address of the task of higher priority
004 TBKDOWN 4 The address of the task of lower priority
008 TBKFRWD 4 The address of the next task of the same priority
0oC TBKBKWD 4 The address of the prior task of same priority
010 TBKACT 4 The active state block address
014 TBKLOAD 4 The load list
018 TBKPSW 8 The PSW loaded by the dispatcher
018 TBKIOMSK 1 The channel and external interrupt masks
019 TBKPKEY 1 The key
TBKPMXA X'08' The XA mode mask
01C TBKPSWA 4 The second half of the PSW
TBKPAM31 X'80' User in AMODE 31
01D TBKINSTR 3 The instruction address
020 TBKPSW2 4 The last half of PSW for abnormal termination
024 TBKATRSA 4 The address of attach’s register save
028 TBKREGS 64 Registers loaded by dispatcher
068 TBKFLOAT 32 The floating point registers
088 TBKMOM 4 The mother task address
08C TBKSIB 4 The next task address following the mother task
address
090 TBKCHILD 4 The address of the first subtask
094 TBKECB 4 The address of attach ECB posted when subtask
completes

Appendix B. GCS Control Blocks 205

GCS Control Blocks

Table 7. Contents of Task Blocks (continued)

HEX
DISP NAME LEN DESCRIPTION
098 TBKETXR 4 The address of the asynchronous exit block to schedule
when task ends
09C TBKSTAE 4 The address of the ESTAE control block
0AO TBKDEB 4 The address of the DEB table
0A4 TBKIDENT 4 Machine and task IDs
0A4 TBKMID 2 The machine ID
0A6 TBKTID 2 The task ID
O=Task run in behalf of a user exit called from an
interrupt handler
1=Console task
2=Command task
0A8 TBKSTOR 4 The address of the task storage anchor block (TSAB)
0AC TBKIUCV 4 The address of the IUCV EIB chain
0BO TBKREXWB 4 The address of the REXX work block
0B4 TBKSFSTL 4 The address of the first line in the program stack
0B8 TBKSLSTL 4 The address of the last line in the program stack
0BC TBKSNLST 4 The number of lines in the program stack
0COo TBKSNBST 4 The number of program stacks
0C4 TBKCOMP 4 A task completion code (ABEND)
0C5 TBKCOMP1 3 A completion code value
(0]0}:] TBKRCODE 2 The abend reason code
0CA TBKKEY 1 The task storage key
0CB TBKPRIOR 1 The task dispatching priority
0CC TBKNDSP 1 The task nondispatchability flags
TBKNODIS X'80' The task is non-dispatchable
0CD TBKFLAGH1 1 A flag byte
TBKPROB X'80' The problem state task
TBKAPPL X'40' This is an independent application
TBKTERM X'20' The task has terminated
TBKNAEB X'10' Schedule no AEBs on this task
TBKESTAE X'08' The ESTAE exit routine is active on task
TBKDUMP2 X'04' Turned on for the second dump
TBKDUMP X'02' The dump is requested by abnormal termination
TBKOSACT X'01' OSRUN is active on this task
0CE TBKFLAG2 1 A flag byte
TBKABEND X'80' The abend was entered
TBKDOS X'40' DOS SVC is in effect
TBKCCVAL X'20' The TBKCOMP contains a valid COMP code
TBKSER X'10' GCTSER entered
TBKFIRST X'08' The first task on priority level
TBKPATHS X'04' The IUCV paths defined by the task
TBKINTER X'02' The interrupt task block
TBKPGFLT X'o1' The task waiting on page fault
OCF TBKFLAG3 1 A flag byte
TBKPGLCK X'80' PGLOCK issued for this task
0DO TBKSUBTA 4 The subtask abend resource manager
0D4 TBKREGSV 4 The address of the abend register save area
0D8 TBKTIME 8 The time task was dispatched
OEO TBKICODE 2 The interrupt code
OE2 TBKILCH 1 The instruction length
OE3 TBKRXMSK 1 The GCTREX PSW int mask
OE8 TBKRBAD 4 The address of the RB
206 z/VM: Diagnosis Guide

Table 7. Contents of Task Blocks (continued)
HEX

GCS Control Blocks

DISP NAME LEN DESCRIPTION

OEC TBKTIOTA 4 The address of the TIOT

OFO0 TBKEPIE 4 The address of the EPIE chain

OF4 TBKWRKEI 4 The address of the EXECIO work area

OF8 TBKWRKCL 4 The address of GCTEIOAB work area

OFC TBKNTPTR 4 The address of the first Task Level Name/Token pair
100 TBKACRS 64 Access Registers loaded by the dispatcher

140 TBKEND 0 The end of the task block

140 TBKLEN 0 The length of the task block

STBLK—State Block

Table 8. Contents of State Blocks

HEX
DISP NAME LEN DESCRIPTION
000 STBLK 240 The state block
000 STBNAME 8 The program name
008 STBPSW 8 The PSW saved for block in STBNEXT
008 STBIOMSK 1 The channel and external interrupt masks
009 STBKCMWS 1 The key, mode, masks, and state
009 STBKEY The key - bits 0-3
009 STBCMW The mode, machine check, and wait masks - bits 4-6
STBEC X'08' 0=BC mode, 1=XA mode
STBEM X'04' Machine check
STBEW X'02' Wait mask
STBSTATE X'01 O=supervisor, 1=problem state
00A STBICP 1 XA-Mode ILC, CC, program mask
00C STBINSTR 4 The instruction address
STBPSW31 X'80' AMODE 31 bit
010 STBNEXT 4 The address of the next state block on state stack
014 STBPREV 4 The address of the previous state block - 0 for the first
018 STBTB 4 The address of the task block for this stack
01C STBNUCBL 4 The address of the NUCCBLK for this module
020 STBENTRY 4 The entry point of the program or SVC
STBENAS1 X'80' AMODE 31 bit
024 STBFLAGH1 1 A flag byte
STBLINK X'80' The link block
STBSVC X'40' The SVC block
STBAEB X'20' The asynchronous exit block (AEB)
STBSYNCH X'10' Synch restore=yes specified
025 STBFLAG2 1 A flag byte
STBFREE X'80' FREEMAIN AEB when the exit ends
STBGMBR X'40' Branch entry (1) for AEB or (0) for SVC entry
STBAEBSD X'20' AEB is for a scheduled exit
STBAEGIO X'10' AEB is for a general 1/0
STBAETIM X'08' AEB is for the timer
STBINTER X'04' The interrupt state block
026 STBWAIT 1 The wait count
027 STBMASK 1 The mask at entry to lock
028 STBSP 1 The subpool of GETMAIN for this block
029 STBLDLOS 1 GCTBLDL-GCTLOS communication byte
STBIOERR X'80' ON-BLDL had an 1/O error

Appendix B. GCS Control Blocks 207

GCS Control Blocks

Table 8. Contents of State Blocks (continued)

HEX

DISP NAME LEN DESCRIPTION

02A STBIORC 1 The 1/O error return code

02B STBLIBCT 1 The LOADLIB number (1 based)

02C STBICODE 2 The interrupt code

02E STBILC1 1 The instruction length

02F STBAMRM 1 The AMODE/RMODE at the time of SVC
STBCAMB31 X'80' The caller was in AMODE 31
STBCRM31 X'40' The caller was in RMODE 31

030 STBEGPRS 64 The caller’s register save area (all registers)

070 STBOVER 64

SECTION FOR ASYNCHRONOUS EXIT AND LINK BLOCKS:

070
070
074
078
07C
080
080
081

081

081

084

088
08A

SECTION FOR SVC BLOCKS:

070
070
071

072
074
078
07C
080
080
088
090
098
0AO
0A4

208

STBWORK
STBAETB
STBAERO
STBAER1
STBAER13
STBAEPSW
STBAEIOM
STBAEKC
STBAEKEY
STBAECMW
STBAEC
STBAEM
STBAEW
STBAESTA
STBAEINS
STBAEA31
STBAEICO
STBAEILC

STBSVCA
STBRSVD2
STBFLAG3
STBERRET
STBNOSA
STBRETRG
STBUSVC
STBVSAM
STB203
STBOSSIM
STBCODE
STBNRMRT
STBCALLR
STBERADR
STBEFPRS
STBEFPRO
STBEFPR2
STBEFPR4
STBEFPR6
STBUSAVE
STBSASZ

z/NM: Diagnosis Guide

64

- =2 00~ D

X'08'
X'04'
X'02'
X'01'

X'80'

N A~ 00O 0 0

The work area

The task block address used for AE

The RO contents when AE gets control
The R1 contents when AE gets control
The R13 contents when AE gets control
The PSW when AE gets control

The channel and external interrupt masks
The key, mode, masks and state

The key - bits 0-3

Mode, machine check, wait masks - bits 4-6
0-BC mode, 1=XA mode

Machine check

The wait mask

O=supervisor, 1=problem state

The instruction address

AMODE 31 bit

The interrupt code

The instruction length

Reserved

A flag byte

Error return desired

No save area wanted

Return callee’s RO, R1 to caller
User SVC call

OS VSAM request

SVC 203

OS simulation SVC

The SVC 203 code value

The address of the normal return
The address of the SVC caller

The address of error return

The caller float register save (0-6)
The caller float register 0 save area
The caller float register 2 save area
The caller float register 4 save area
The caller float register 6 save area
A (user save area)

The size of the user save area

Table 8. Contents of State Blocks (continued)
HEX

GCS Control Blo

cks

DISP NAME LEN DESCRIPTION

0A6 STBSAKEY 1 The key of the user save area

0A6 STBSAKY 1 The actual key of the user save area
0A7 STBRSVD3 1 Reserved

0A8 STBOSRS1 4 The first OSRUN save area pointer
0AC STBOSRS2 4 The second OSRUN save area pointer

COMMON SECTION:

0BO STBEACRS 64
OFO0 STBEND 0
OFO0 STBENDSV 0
OFO0 STBSZSVC 0
OFO0 STBSZLA 0

SMAB—Storage Management

Table 9. Contents of Storage Management
HEX

The caller's access register save area (all registers)
The end of the state block

The end of the SVC block

The length of the SVC block

The length of the link or AEB

DISP NAME LEN DESCRIPTION
000 GCTSMAB 7208 The storage management anchor blocks
000 SMASALT 16 The list of anchor blocks
000 SMALCAB 4 The address of low storage anchor block
004 SMAHCAB 4 The address of high storage anchor block
008 SMALPAB 4 The address of low private storage anchor block
0oC SMAHPAB 4 The address of high private storage anchor block
010 SMATASK 4 The address of the task block of the abending subtask
014 SMAFLAGS 1 Flags
SMAIPL X'40' The IPL initialization is complete
SMAGFDCP X'20' GTCGFDCP is running
SMACOMMN X'10' Getting COMMON storage
SMANSTK X'08' The save area is not on stack (GCTSVQ)
015 SMAGFDFL 1 Used by GCTGFPCP
SMARTSH X'80' We removed a TSH page from the spare list
SMARGSB X'40' We removed a GSB page from the space list
SMARMNOR X'20' We removed a MNOR page from the spare list
SMARTSBE X'10' We removed a TSABE block from the spare list
SMAATSH X'08' We added a TSH page to the spare list
SMAAGSB X'04' We added a GSB page to the spare list
SMAAMNOR X'02' We added a MNOR page to the spare list
018 SMATSBEL 4 Length of the storage used for TSABE
01C SMATSHF 4 The address of the first page of full TSH pages
024 SMATSHFF 4 First page of the TSH blocks with one 1 free block
02C SMAGSBF 4 The address of the first page of full GSB pages
034. SMAGSBFF 4 First page of GSB blocks with 1 free block
03C SMAGRAIN 4 The size of the grain of storage
040 SMATSHBL 2 The length of a block of TSHs
042 SMATSHBN 2 The number of blocks of TSHs on a page
044 SMATSHBM 2 The maximum number of TSHs in a block
046 SMAGSBBL 2 The length of a block of GSBs
048 SMAGSBBN 2 The number of blocks of GSBs on a page
04A SMAGSBBM 2 The maximum number of GSBs in a block
04C SMAFTSH 4 The address of a free TSH page

Appendix B. GCS Control Blocks

209

GCS Control Blocks

Table 9. Contents of Storage Management (continued)

HEX

DISP NAME LEN DESCRIPTION

054 SMAFGSB 4 The address of a free GSB page

05C SMAFTSBE 4 The address of free TSABE

060 SMASCOML 4 The address of the start of low common storage

064 SMALCOML 4 The length of low common storage

068 SMASCOMH 4 The address of the start of high common storage

06C SMALCOMH 4 The length of high common storage

070 SMASAVEA 4 The address of the current GETMAIN/FREEMAIN save
area

074 PRISAVEA 2364 Save area set one

074 PRISAVE 60 The register save area for branch entry

0BO PRIWORK1 256 The work area for branch entry

1BO PRIWORK2 256 The work area for branch entry

2B0 PRIWORKS 256 The work area for branch entry

3B0 PRIWORK4 256 The work area for branch entry

4B0 PRIWORK5 256 The work area for branch entry

5B0 PRIWORK®6 256 The work area for branch entry

6B0 PRIWORK?7 256 The work area for branch entry

7B0 PRIWORKS8 256 The work area for branch entry

8B0 PRIWORK9 256 The work area for branch entry

9B0 PR2SAVEA 2364 Save area set two

9B0O PR2SAVE 60 The register save area for the second branch entry

9EC PR2WORK1 256 The work area for branch entry

AEC PR2WORK2 256 The work area for branch entry

BEC PR2WORKS 256 The work area for branch entry

CEC PR2WORK4 256 The work area for branch entry

DEC PR2WORKS5 256 The work area for branch entry

EEC PR2WORK6 256 The work area for branch entry

FEC PR2WORK7 256 The work area for branch entry

10EC PR2WORKS8 256 The work area for branch entry

11EC PR2WORK9 256 The work area for branch entry

12EC PR3SAVEA 2364 Save area set three

12EC PR3SAVE 60 The save area for GCTGFDCP

1328 PR3WORK1 256 The work area for branch entry

1428 PR3WORK2 256 The work area for branch entry

1528 PR3WORK3 256 The work area for branch entry

1628 PR3WORK4 256 The work area for branch entry

1728 PR3WORKS5 256 The work area for branch entry

1828 PR3WORK6 256 The work area for branch entry

1928 PR3WORK7 256 The work area for branch entry

1A28 PR3WORKS8 256 The work area for branch entry

1B28 to PR3WORK9 256 The work area for branch entry

1C27

ANCH—Storage Anchor Block

Table 10. Contents of Storage Anchor Blocks

HEX

DISP NAME LENGTH DESCRIPTION

000 ANCHBK 552 The storage anchor block
000 ANCHFLAG 1 Flags

ANCHLCAB X'80' The anchor block for low common storage

210 z/VM: Diagnosis Guide

Table 10. Contents of Storage Anchor Blocks (continued)

GCS Control Blocks

HEX

DISP NAME LENGTH DESCRIPTION
ANCHHCAB X'40' The anchor block for high common storage
ANCHLPAB X'20' The anchor block for low private storage
ANCHHPAB X'10' The anchor block for high private storage

004 ANCHKEYP 512 Starts an array of 32 records, each 4 words long
ANCHKEYH 4 The head of the SACB queue for this key
ANCHKEYT 4 The tail of the SACB queue for this key
ANCHKEYZ 4 The size of the last request under 4K
ANCHKEYL 4 The SACB of the last request under 4K

204 ANCHPGMN 4 The address of the 1st page of minor SACBs

208 ANCHPGL 4 The major SACB for the lowest fully free page

20C ANCHPGH 4 The major SACB for the highest fully free page

210 ANCHMAJL 4 The major SACB for the lowest free page of storage

214 ANCHMAJH 4 The major SACB for the highest free page of storage

218 ANCHS200 4 TSABE for storage gotten in subpool 200

21C ANCHTABL 4 The list of contiguous blocks of free storage

220 ANCHFMNR 4 The free minor’s page

224 4 The dummy backward pointer

EXTWA—External Interrupt Handler Work Area

Table 11. Contents of the External Interrupt Handler Work Area (EXTWA)

HEX

DISP NAME LENGTH DESCRIPTION

000 EXTWA 328 The external interrupt handler work area
000 EXTPSW 8 The external old PSW

008 EXTSAVE 80 A save area

058 EXTAREA 72 A save area

0AO EXTREGS 64 Registers at the time of the interrupt
OEO EXTFPR 32 Floating point registers

100 EXTACRS 64 Access registers at the time of the interrupt
140 EXTICODE 2 The interrupt code

142 EXTILCH 1 The instruction length

143 5 Reserved

SVCWA—SVC Interrupt Handler Work Area

Table 12. Contents of the SVC Interrupt Handler Work Area (SVCWA)

HEX

DISP NAME LENGTH DESCRIPTION

000 SVCWA 536 The SVC interrupt handler work area
000 SVCSAVE 64 Registers at the time of the interrupt
040 SVCFREGS 32 Floating point registers

040 SVCFREGO 8 Floating point register 0

048 SVCFREG2 8 Floating point register 2

050 SVCFREG4 8 Floating point register 4

058 SVCFREG6 8 Floating point register 6

060 SVCASAVE 64 Access registers at the time of the interrupt
0AO SVCSTB 240 The default state block

190 SVCUSA 96 The default user save area

1FO SVCSTPTR 4 A pointer to the state block in use

Appendix B. GCS Control Blocks

211

GCS Control Blocks

Table 12. Contents of the SVC Interrupt Handler Work Area (SVCWA) (continued)

HEX
DISP NAME LENGTH DESCRIPTION
1F4 SVCNUM 1 A copy of the SVC number
1F5 SVCILC 1 A copy of the ILC byte
1F6 RESERVED 2 Reserved
1F8 SVCNQRY 24 The PLIST for the NUCEXT QUERY
1F8 SVCNFUNC 8 =CL8'NUCEXT’ identifies the NUCEXT function
200 SVCNNAME 8 =CL8'’ nucleus extension name
208 SVCNPTR 4 Receives the pointer to NUCXBLK
20C SVCNIND 4 =XL4‘FFFFFFFF’ identifies the NUCEXT QUERY
function
210 SVCC14 8 A place for the control reg 14
210 SVCC14B1 1 The first byte of control reg 14
C14MCKON X'10' Enable for CRWs

PGMWA—Program Interrupt Work Area

Table 13. Contents of the Program Interrupt Work Area (PGMWA)

HEX
DISP NAME LENGTH DESCRIPTION
000 PGMWA 272 The program check interrupt work area
000 PGMOPSW 8 The program old PSW
008 PGMREGS 64 Registers at time of the interrupt
048 PGMACRS 64 Access registers at time of the interrupt
088 PGMICODE 2 The interrupt code
08A PGMILCA 1 The instruction length
08B PGMILCTR 1 ILC for trace
PGMILCB1 X'02' ILC bit 1
PGMILCB2 X'01' ILC bit 2
090 PGMSAVE 64 The register save area
0DO PGMPFSAV 64 The page fault reg save area

VMCB—Virtual Machine Control Block

Table 14. Contents of the Virtual Machine Control Block (VMCB)

HEX
DISP NAME LENGTH DESCRIPTION
000 VMCB 32 The virtual machine control block
000 VMCUSER 8 The virtual machine user 1D
008 VMCINSIG 4 The initialization signal 1D
008 * 2 Reserved
00A VMCSIGID 2 The virtual machine signal 1D
0oC VMCLCKH 4 The lock holding pointer
010 VMCLCKW 4 The lock waiting pointer
014 VMCSCHDX 4 The pointer to the chain of AEB blocks to be scheduled
for this virtual machine
018 VMCFLAGS 1 Flags
VMCWAIT X'80' The virtual machine in wait
212 z/VM: Diagnosis Guide

Appendix C. Trace Table Codes

Trace code table entries come in two flavors: 32-byte and 64-byte. The 32-byte
hFiure 16

entry format is shown in The 64-byte entry format is shown in

n page 214
Time-of-day Trace | Contents of
741000 ciock 0000 /5 |REG N
0 1 2 8 A C

Contents of | Contents of | Contents of | Contents of
REG N+1 REG N+2 | REG N+3 REG N+4

10 14 18 1C

Figure 15. Format of a 32-byte CP Trace Table Entry

Hex

Displacement Contents

X'00' X'74', which indicates a CP trace table entry.

X'o1' Unused (zeros).

X'02' The contents of the time-of-day clock at the time the event being
traced occurred.

X'08' Unused.

X'0A' The trace ID or trace entry code, which defines the event.

X'oC' The contents of register n.

X'10' The contents of register n+1.

X'14' The contents of register n+2.

X'18' The contents of register n+3.

X1C' The contents of register n+4.

|Figure 16 on page 214| illustrates the format of a 64-byte CP trace table entry.

© Copyright IBM Corp. 1991, 2005 213

Trace Table Codes

75

80 Clock

Time-of-day

0000

Trace
ID

Contents of

Contents of

REG N REG N+1
10 18
Contents of Contents of
REG N+2 REG N+3
20 28
Contents of Contents of
REG N+4 REG N+5
30 38
Figure 16. Format of a 64-byte CP Trace Table Entry
Hex
Displacement Contents
X'00 X'75', which indicates a CP trace table entry.
X'o1' X'80', which indicates a 64-byte CP trace table entry.
X'02' The contents of the time-of-day clock at the time the event being
traced occurred.
X'oC' Unused.
X'OE' The trace ID or trace entry code, which defines the event.
X'10' The contents of register n.
X'18' The contents of register n+1.
X'20' The contents of register n+2.
X'28' The contents of register n+3.
X'30' The contents of register n+4.
X'38' The contents of register n+5.

The format of a trace table entry and TRACE ID codes are described by the
TTABK. The format of a trace table page and its forward/backward pointers (last

two words) are described by the TTPBK.

214 z/VM: Diagnosis Guide

Trace Table Codes

The following summarizes the event-specific information that CP records in its trace
table entries from bytes X’0A’ to X’1F’ (for 32-byte entries), or from bytes X’0E’ to
X'3F’ (for 64-byte entries).

Appendix C. Trace Table Codes 215

Trace Table Codes

/v €-0 uondnuaiy|
piop @l uondnueiu MIAnA salkg MSd PIO O/I salkg MSd PIO O/I 2000 SINDOH Jeydepy [enuip
o|ge} g lewlo 89S 1000
(dooidzn) 1dnueu|
lsjpweled dnusjul | (AIS) AI (PUUBYOANS | AFAAIAHIAIAAIAA MSd PIO O/l 48sn 0020 SIADOH O/ ¥X [enUIA
(Mmsdann)
MSd isenn sSaIpPY MFAWA NN4.0100 00 00 00 00 00v0 NNYdOH lesn uny
ssalppy abeioig
SSaIpPY uinjey sJo|[eQ | ssaippy MGANA Jolled ¥oolg pauiniey pauinjey seikg 00 00 00 00 0220 Xdd4dOH |ood |SOS uinley
(v1ddD) (24dD) (1H4dD) ssaippy (0duD) ebeiolg
SS2IPPY UIN}eY SJ9|[BD | SS2IPPY MFAINA JolleD | X00|g [BNHIA pauiniey | pauiniey spiome|gnod Xxx>d| $)00|9 0120 INAAdOH | 9914 8|qesbed uinjey
(r1ddD) (L1YdD) ssaippy (1H4dD) ssaippy (0duD) 4H4dOH (1344)
SsaIppy uiniey sJe|e) MIANA sJoleD %o0|g pauiniey | pauiniey splome|gnoq XxXx>d| $)00|9 0020 3YH4dOH | ebelols 8l uiney
ssalppy ssalppy abeioig
SS2IPPY UINleY SJ9leD | MFAINA SJoisenbay yoolg paubissy peisenbay salkg Juswubly syo0ig 0290 XHd4dOH |ood |SOS urelqo
(r1o34) (L1YdD) ssaippy (renuin) ssalppy peisenbay abeio)g
SsaIpPY uinjey sJ9leD | MFAINA sJoisenbay yoolg paubissy SpIoM 8|qnoQ XXx>d| $)00|g 0190 INAAdOH | 8814 8|qeebed urelqo
(e} EISENELE)]
(343494x4d) (11ddo) (24dD) »o01g peisenbey 444dOH (9014)
SS8IPPY uinley sJo|[ed $saIppY MIAWA | paubissy jo sseippy spiome|qnoQ Xxx>d| s)00|9 0090 IH4dOH | ebelols sai4 uelIqo
ssalppy leuueyogns
MSd PIO O/l dSNNYX4d 00|19 821neQ [edYy ansSA3anied €3 0€S0 H4IdOH ¢ adA} ydnuaiul /|
o|ge} g lewlo 98S 10S0
SsaIppy
MSd PIO O/ HSNNYX4d ¥o0|g 801AeQ [edd | gNSAIAYIAIAAIAY 0050 141dOH dnueiu O/l
(o10m)
MSd apo) uondnusiu| (vS4) ssaippy dnusyu|
PIO 98YD aulyoep 308y sulyoep abelolg Buljre 00t0 HOWJOH 308YD BUIyoB|
00
00 00 00 40 ssaippy 00 00 00
MSd PIO weibold | uondeox3 uonejsuel 1dnusul ‘071 | 00 40 SS8IPPY MAANA 00€0 HHddOH dnueiu) weiboid
(dOOASX4d) (NOASX4d) NNX
MSd PIO OAS idnusiul OAS OASD | “ININD pusqy ji puaqy 0020 OASdOH dnusiu] OAS
(doLX3ax4d)
MSd PIO [euwaixg | (dOLXIXHd) idnusju AX3.0 00 00 00 00 0010 1X3dOH 1dnusu| feuseix3
ol 8l vl ol 2 v (xay) 135440
v+N €+N TN L+N N
534 40 SLINILNOD | DH3H 40 SINILNOOD| 9H3IH 40 SINILNOD | H3H 40 SLNILNOD| H3H 40 SINILNOD al 3ovdlL 37NAOW INVN

z/NM: Diagnosis Guide

216

Trace Table Codes

("HolvA3ay) 0=00
00 00 00 00 00 00 00 00 00 00 00 00 | SS8IPPY MGHOI @AY | gNSAIAHIAIAAIAY 010l SOIdOH ‘leuueyogng ieH
(HolvA3ay) €=00
00 00 00 00 00 00 00 00 00 00 00 00 | SS®IPPY MGHOI @AY | GNSAIAHIAIAAIAY €001 SOIdOH ‘lpuueyoqns Jes|o
("Holva3ay) 0=00
00 00 00 00 00 00 00 00 00 00 00 00 | SS@IPPY MGHOI @AY | GNSAIAHIAIAAIAaY 0001 SOIdOH ‘lpuueyoqns Jes|o
(jouueyogns
¢ adAy) 1dnusiu|
lsjowered Wdnuew | (QIS) Al leuueyagns €4 €3100 00| (LAQVDIANA) puesedo LSNIAINAIOO0 00 9€30 SOAdOH | Bulpued is8] [enuiA
(Ms0sHOl)
(Ms3) (MS0OS) piom (e 8dAy) jpuueyogng
PIOM SNIBIS pepusixg snjeig euueyogns €4 €3100 00 Se30 SOAdOH 1591 [enUIA
(a4o) o0ig (e @dAy) jpuueyogng
1senbay uonesedo | (LAVDIAWA) puelsdo €4 €3100 00 €€30 SOAdOH HEIS [BNHIA
€0
(MOWd) SPIOM [043u0D (e 8dAy) jsuueyogns
Juswebeuely yred €4 €3100 00 ze30 TOAdOH AJPON renuiA
(jouueyogns
(dooldzn) ¢ adAy) 1dnueiy)
lsjeweled Wdnusul | (AIS) AI leuueyogns €4 €3100 00 MSd PIO O/I J8sn 0030 SIAdOH O/1 VX [eNUIA
welibold (MVD)
[BuUBYD Ul MDD 1841 | PIOM SSBIPPY [dUUBYD | AIAAIAHIAIAAIAA LSNIQWAIO0 00 1640 AOAdOH | 1sBed4 O/l MBS [endIA
weiboid (Mv2) HOAJOH
[puueyD Ul MDD 1SII4 | PIOM SSIPPY [BUUBYD | AFAAIAHIAIAAIAA L1SNIAINAIOO 00 0600 AOAdOH O/ HelS [ENHIA
(Ms2) 1noBo
PIOM SNIeIS [BuuByD [puueyd pewiT| A3IAAIAYIAIAAIAA L1SNIANAIOO 00 0040 MSOdOH | P8I0IS MSD [eNMIA
dnusiu|
lsjoweled dnusul | (AIS) AI (PUUBYOANS | ASAAIAYIAIAAIAA | (LQYDIANA) pueiedo L1SNIAINAIOO0 00 9€00 SOAdOH | Bulpued iss] [enuiA
(MsosHOl)
(Ms3) (MS0DS) piom [puueyogng
PIOM SNIBIS pepusixg snjeis [puueyaqns | AIAAIAYIAIAAIAA GE00 SOAdOH IECTEITY
(a40) »o0ig |euuByOgNS
1senbay uonelado | (LAVOIIAWA) puesedO | AIAAIAYIAIAAIAA €€00 SOAdOH HEIS [BNHIA
€-0
(MOINd) spiop [04u0) |Jauueyogng
JuswabeueN yed | AIAAIAHIAIAAIAA 2e00 TOAdOH AJIPON [enuIA
oL 8l vl oL 2 v (xay) 135440
v+N €+N N L+N N
534 40 SLINILNOD | DH3H 40 SINILNOO| 9H3IH 40 SINILNOD | H3IH 40 SLNILNOD| H3H 40 SINILNOD al 3ovdL 3T1NAOW INVN

217

Appendix C. Trace Table Codes

Trace Table Codes

HIAdOH

SOAdOH
1SS2IppY AOAdOH
8njosqy 1SOH Mg0Id (HoIvA3ay) NYddOH 0=00 ‘[euueyogng
1SS81pPPY TOAdD 1SS2IPPY MO | Pepuadsng snoinsld | SS8Ippy MaHOI @AY | gNSAIAHIAIAAIaY 0801 HVddOH swnsey [eay
(HoIvA3ay) €=00
00 00 00 00 00 00 00 00 00 00 00 00 | SS8IPPY MFHOI 8AOY | gNSAIAHIAIAAIAY €501 141dOH ‘leuueyogng 1881
(Mms3) (MSDS) piom 1=00
PIOM SNIBIS papualx3 snjeig jeuueyodns | gNSAIAHIAIAAIAY 101 [41dOH ‘leuueyogng 1881
(Mms3) (MSOS) piom 0=00
PIOM SNIEIS pepualx3 snjeig jeuueyodns | gNSAIAHIAIAAIAY 0501 I41dOH ‘leuueyogng 1881
(a40) »ooig 8suas €=00
Jsenbay uonelsedo $SIPPY MFHOI | gNSAIAY IA3aAIay ge0l I41dOH ‘|puueyoqng Hels
asues =00
00 00 00 00 00 00 00 00 00 00 00 00 ssaIppy MgHOI | 9NSA3IAHIAIAAIAY 6201 I4IdOH ‘lauueyogng Lels
(g40) xo0ig (HolvA3ay) asues 0=00
1senbey uonelsadO | ssaIppY MFHOI AY | dNSAIAHIAIAAIAY 8€01 IdIdOH ‘leuueyogng ueis
(a40) o0ig €=00
1senbay uoneledo $saIppy M9HO!l | 9NSA3IAdIAIAAIAH €01 SOIdOH ‘leuueyogng veig
1=00
00 00 00 00 00 00 00 00 00 00 00 00 $saIppPY MFHO!l | 9NSA3IAHIAIAAIAY LEOL SOIdOH ‘lauueyogng ueis
(g40) ooig (HoIvA3ay) 0=00
1senbey uonesadO | ssaIpPY MFHOI 9A0Y | dNSAIAHIAIAAIAY 0€01 SOIdOH ‘leuueyogng veis
JOAdOH €=00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | GNSAIAHIAIAAIAY €201 SOIdOH | ‘[euueyogng Aypo
1=00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | GNSAIAHIAIAAIAY 1201 SOIdOH | ‘[euueyogng Aypo
el
(MOINd) spiop [04u0) 0=00
9 pIOM MO Juswebeuey yred | gNSAIAHIAIAAIAY 0201 SOIdOH | ‘|euueyogng Aypoln
(HoIvA3ay) €=00
00 00 00 00 00 00 00 00 00 00 00 00 | SS8IpPPY MEHOI 8ABOY | GNSAIAHIAIAAIAY €101 SOIdOH ‘leuueyogng yeH
(HoIvA3ay) 1=00
00 00 00 00 00 00 00 00 00 00 00 00 | SS8IpPPY MGHOI 8ABOY | GNSAIAHIAIAAIAY LLOL SOIdOH ‘louueyogng yeH
ol 8l vl ol 20 v (xay) 135440
v+N €+N TN L+N N
H3Y 40 SINILNOD | H3H 40 SINILNOD| H3IH 40 SINIINOD| HIH 40 SINILNOD| 9H3H 40 SINILNOD ai 3ovylL ITnaon JNVN

z/NM: Diagnosis Guide

218

Trace Table Codes

€=00
‘leuueyogns Aypo

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 disa3aad 8601 dlldOH | 1euueyogng | adAL
2=00
‘lauueyogng AHpoN
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 aisaaad 1601 alldOH | 1euueyogng | adAy
1=00
__wccmconzm \C_UOS_
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 aisan3aad 9601 dlldOH | 1euueyogng | adAL
e-1 0=00
(MOINd) spiop [04u0) ‘leuueyogng Aypo
9 pIOM MO Juswebeuely yred aisaaad G601 alldOH | 1euueyogng | edAy
€=00
__wccm:oﬁ_:m 1s8]
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 disan3ad €601 H4IdOH | leuueyogns | adAL
1=00
(ms3) (MSOS) piom ‘louueyoqgng 1sal
PIOM SNIeIS pepuaix3 snjels |puueyogng aisaaad 2601 H4IdOH | Ieuueyogns | adAL
0=00
(Mms3) (MSDS) piom ‘leuueyogng 1881
PIOM SNIEIS papualx3] snjeig euueyogns aisan3aad 1601 H4IdOH | leuueyogns | adAL
asuodsay/isenbay
eleq asuodsay eleq i1senbay 0601 OIDdOH | uonewsou| |uueyd
HIAdOH
SOAdOH
1SS2IpPY AOAdOH
8njosqy 1so0H M9OId ("HolvA3ay) NYddOH €=00 ‘[euueyogng
1SS8IPPY TOAdD 1SS2IPPY MO | Pepuadsng snoinaid | sSaIppy MAHOI 8AldY [gNSAIAYIAIAAIAaY €801 HVddOH awnsay [eay
HIADOH
SOAdOH
1SS8IpPY AOAdOH
8Injosqy 1S0H Yg0Id (doiva3ay) NVddOH | 2=00 ‘|lsuueyogns
1SS8IpPPY TOAdD 1SS8IPPY MO | Pepuadsng snoineld | SSelppy MEHOI 8AldY | gNSAIAHIAIAAIaY 2801 HYddOH awnsey [eay
HIADOH
SOAdOH
1SS8IpPY AOAdOH
81njosqy 1S0H Mg0Id (HoIvA3ay) NVddOH 1=00 ‘leuueyogns
1SS81pPPY TOAD 1SS8IPPY MO | Pepuadsng snoinsid | SS8Ippy MEHOI @AY [gNSAIAHIAIAAIaY 180} HYddOH awnsey [eay
oL 8l vl oL o) v (xay) 135440
v+N €+N N L+N N
534 40 SLINILNOD | DH3H 40 SINILNOO| 9H3IH 40 SINILNOD | H3IH 40 SLNILNOD| H3H 40 SINILNOD ai 3ovylL 37naon JNVN

219

Appendix C. Trace Table Codes

Trace Table Codes

(HoIvA3ay) (¢ ®dA) =00
00 00 00 00 00 00 00 00 00 00 00 00 | SS8IPPY MFHOI 8AlOY ansA3adied €3 £5€E1 H4IdOH ‘lsuueyoqgng 1s81
(Mms3) (MSDS) piom (e 8dAy) =00
PIOM SNIBIS papualx3] snjeig euueyogns ansA3adied €3 K<ty H4IdOH ‘leuueyogng 1seL
(Mms3) (MSDS) piom (g odAy)
PIOM SNIBIS papualx3 snjeig euueyogns ansA3adied €3 0Sel H4IdOH ‘leuueyogng 1s8L
(g40) »ooig (¢ 8dhy) =00
Jsenbay uonesedo $S8IPPY MFHOI gnsA3adied €3 eeel SOIdOH ‘|puueyoqng Lels
(¢ 8dAy) 1=00
00 00 00 00 00 00 00 00 00 00 00 00 $SIPPY MFHOI ansA3adied €3 el SOIdOH ‘lauueyogng ueig
(g40) xooig (HolvA3ay) (¢ @dh1) 0=00
1senbey uonelsadO | ssaIPPY MGHOI 8AIOY gnsA3adied €3 oeel SOIdOH ‘lauueyogng ueig
JOAdOH (g ®dA) =00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ansA3adied €3 €zel SOIdOH | ‘|euueyogng Aypoln
(g ®dA) 1=00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 gnsA3adied €3 Leel SOIdOH | ‘|euueyogng Aypoln
el
(MOINd) SPIOop [04u0D (e ®dA) 0=00
9 PIOM MOINd Juswebeuey yred ansA3adied €3 ozel SOIdOH | ‘leuueyogng Aypo
(HoIvA3ay) (¢ 8dhy) =00
00 00 00 00 00 00 00 00 00 00 00 00 | SS®IPPY MFHOI 8AlOY ansA3adied €3 glel SOIdOH ‘leuueyogng ey
("HoIvAaay) (¢ 8dhy) 1=00
00 00 00 00 00 00 00 00 00 00 00 00 | SSIPPY MFHOI 8AIOY gnsA3adied €3 LEL SOIdOH ‘leuueyoqng JeH
(HolvA3ay) (¢ #dA1) 0=00
00 00 00 00 00 00 00 00 00 00 00 00 | SSIPPY MFHOI 8AIOY gnsA3adied €3 olLElL SOIdOH ‘lauueyoqng JeH
(HoIvA3ay) (g ®dA) =00
00 00 00 00 00 00 00 00 00 00 00 00 | SS8IPPY MFHOI 8AIOY gnsA3adied €3 €0¢g! SOIdOH ‘lauueyogng Jesln
(HolvA3aay) (g ®dA) 0=00
00 00 00 00 00 00 00 00 00 00 00 00 | SS8IPPY MFHOI 8AIOY ansA3adied €3 00€! SOIdOH ‘lauueyogng Jesln
Gl - 0 seikg 1OMHIHOI 0 peAigosy ered
BleQ 9suas juaunouo) | akg myd3 AJAA3ad 1401 1d1dOH 9suag jualndouo)
St oINS
- 0 seikg eleqg esueg | INOSHOIIAIAAIAY 0401 [41dOH eleQq asuss O/
00 00 00 00 00 00 00 00 8poD uinjey $saIppyY MFHO!l | 9NSA3IAHIAIAAIAY 0vol XOIdOH | 1senbay Q| |9oue)
ssalppy dnusyu|
MSd PIO O/l HSNNYX4d ¥oo|g 8d1neq [eey aisaaad 6601 H4IdOH | [euueyogns | adAL
ol 8l vl ol 20 v (xay) 135440
v+N €+N TN L+N N
H3Y 40 SINILNOD | H3H 40 SINILNOD| H3IH 40 SINIINOD| HIH 40 SINILNOD| 9H3H 40 SINILNOD ai 3ovylL ITnaon JNVN

z/NM: Diagnosis Guide

220

Trace Table Codes

uonon.isul sbe|4
XN JO ssalppy MIOSIN JO SsaIppy 00 00 00IdOSAS-dO [p0D uld|dl Yed | 9ADNI 8y} Jo ssalppy 990G} VNIdOH Aidey ADNI
uononJisul sbe|4
IX8N JO ssaippy MEOSIN 1O ssaippy | 00 00 00IADSAS-dO [8p0D uil|dl yed | 9ADNI 8yl Jo ssalppy S0S 1 VNIdOH BAIBd8Y ADNI
uononisul sbe|q
IX8N Jo ssaippy MEOSIN 1O sseippy | 00 00 00IADSAS-dO [8p0D uiH|dl yied | 9ADNI 8yl Jo ssalppy ¥0G1 VNIdOH pues ADNI
uononisul sbe|q
XN JO ssalppy MEOSIN 1O SsaIppy 00 00 00 00 [8P0D uld|dl Yred | 9ADNI 8y} Jo ssalppy €0S | VNIdOH aquasag AONI
uononisul
IX8N J0 ssalppy Jeyng Jo ssaippy | 00 00 00IADSAS-dO 00 00 00 00 | 9ADNI 8y Jo ssalppy 20G1 VNIdOH | Jeyng easidyd AONI
uononJisu|
1XaN JO ssalppy 00 00 00 00 00 00 00 00 00 00 00I0Q | dADNI 3yl Jo ssalppy L0S} VNIdOH abessa|\ 1sal ADNI
uononJisu| SU0I}08UU0D
IXON JO Ssalppy | JO 'ON "Xel\|dzisulied 00 00 00IdOSAS-dO 00 00 00 00| dADNI 3y} JO ssalppy 00St VNIdOH Aienp ADNI
Aressaoauun awnsay
al Jesn 00 00 00 00 00 00 00 00 00 00 00 00 devi dNIdOH | LOINNOD NAIOddY
$saIppy MAANA $saIppY TNYVdI ssalppy G100 | Beld [odAL il ured | GADNI dUs JO SSaIppY oev NNIdOH ydnueiu] WA/OddY
109UU0D
uononisul 00104 pepusadsng swnsay
IXSN JO ssalppy 00 00I8P0D Hdl 1eum Igsberd|1sbely 00[8p0D uld|dl Yred | 9ADNI 8yl Jo ssalppy devl HNIdOH | LOINNOO WA/OddY
uononJisul sbe|q
XN JO ssalppy 00 00 |00ledOdN3s 00 00 Oolerers [8p0D uld|dl Yed | 9ADNI 8y} Jo ssalppy vivi VNIdOH | 3LV1S13S INA/OddY
uononsu sbe|4 A4AONL3S
XN JO ssalppy 00 00 00 ledOdN3s 00 00 00le1erS [8p0D uld|dl Yed | 9ADNI 8y} Jo ssalppy gyl VNIdOH NA/OddY
uononusul | [2A87 ONAS PO OdS sbe|4 A1VLSAHO
XN JO ssalppy 1Bel4 dIS [8poD dIS 00 I00lesSDVv1dIeielrs [8P0D uld|dl Yred | 9AONI 8y} Jo ssalppy 154" VNIdOH NA/OddY
uononasu| 00 Lsbej4
IXSN JO ssalppy 00 00 00 00 | 104 reymizsbe|djereis [8P0OD uld|dl Ured | 9ADNI 8y} Jo ssalppy d0¥1 VNIdOH d3A3S NA/OddY
uononJsu| 00 1sbe|4
IX8N JO ssalppy 00 00 00 00 | 104 reymiesbeldjerers [8P0D uld|dl yted | dADNI 8yl Jo ssalppy daori VNIdOH | LOANNOOD INA/OddY
uononsu dOan3s 1sbe|4
1XSN JO Ssalppy MIOSIN 40 sSaIppY | |04 eumiesheld|erelrs [8P0D uld|dl Yted | dADNI 8yl Jo ssalppy Sovl VNIdOH | 3IAIFO3H NA/OddV
uononasuj dOdN3Ss 1sbel4 XXXXAN3S
IXSN JO SsaIppy MIOSIN 40 SSaIpPY | |OY eumiesheld|erels [8P0D uld|dl Yied | dADNI 8yl JO ssalppy 144" VNIdOH NA/OddVY
1senbay Qy| |eoue)
00 00 00 00 00 00 00 00 9po) uiniey $S8IpPY MFHOI danNsA3adlied €3 ovel XOIdOH [euueyogng ¢ adAL
oL 8l vl oL 2 v (xay) 135440
VN E+N ZHN N N
D34 40 SINILINOD | 93H 40 SLINILINOD| 93H 40 SINILNOD | 93H 40 SINILNOD| 93H 40 SLNILNOD ai 30vdl 37NAOIN JNVN

221

Appendix C. Trace Table Codes

Trace Table Codes

HVYHO-gaIM

ILIa3-93Mm
Maxi 19714d0-g3IM (wsn) aiv1-gam
ADNI 8} JO SSaIPPY INN4-g3M | Al Yred 1(SDD) al ured [3AOIN-93MI00 00 | MEVYNS 8u} Jo ssaippy 7091 dOAdOH 3JAIZO3H SO0
ssalppy
MEAWA uaund | AJQAY 8Ui Jo sSaIppy | 00 001(SDD) Al Yed | 00 13A0D4d-dII00 00 00 00 00 00 €091 MOAJOH 394Nd SO0
£ niyy G niyy MOAdOH
0 s&¥q ‘ere@ 1dedoy | 00 001(SOD) Al ured 8 sa1q ‘ereq 1dedoy 0091 1OAdOH 1dedoy 00
$S2IPPY MFANA ssaIppy TNYVdI $SIPPY MF100 INON | 9ADNI dY} Jo SSaIPPY 0SS NNIdOH 1dnuau] oN ADNI
Be|4 Migxi
SSIPPY V| ssaIppy YEOSN ssaIppy MOTaXI [9poD udijured SSO 00 00 00Idl SSO LESL dNIdOH | 8dIneS walsks ADNI
$S2IPPY MFAWA ssaIppy TNYVdI ssaIppy MG100 | Bed |odAL idl ured | 9ADNI du} Jo SSaIppY 0€s1 NNIdOH dnuaul ADNI
uononJsu| Jaynq yibuan
XN Jo SsaIppy €eJep 8y} Jo ssaIppy ejeq |yibus Joyng 00 00 00 00 | GADNI dU} JO SSBIPPY GG VNIdOH 770dI ADNI
uonoNJsu| JSeiN
XN Jo ssaIppy 00 00 00 00 00 00 00 00 00 00 OOMSEIN | FADNI 8Y} JO SSBIPPY LG VNIdOH [013u0D 1S ADNI
uononJIsu|
XN Jo ssaIppy 00 00 00 00 00 00 00 00 00 00 OOPMSEIN | FADNI 8Y} JO SSBIPPY 0lG1 VNIdOH YseiN 1S ADNI
uononJIsu| sbe|4
XN Jo ssaIppy 00 00 00 00| 00 00 00IAOSAS-dO [9p0D uid|Al ured | 9ADNI 8y} JO SsaIppy 4051 VNIdOH Janas AONI
uolonJIsu| sbe|4
XN Jo ssaippy 00 00 00 00| 00 00 00IAOSAS-dO [9p0D uid|Al ured | GADNI 8y} JO Ssaippy 3051 VNIdOH awnsay ADN|I
uolonJIsu| sbe|4
1XaN Jo ssaippy 00 00 00 00| 00 00 00IAOSAS-dO [9p0D uid|Al Ured | GADNI 8y} JO ssaippy aost VNIdOH 30S3IND AONI
uononJIsu|
1XaN Jo SsaIppy | Jegng 8y} Jo ssaIppy | 00 00 00IADSAS-dO 0018P0D UIHI00 00 | FGADNI 8y} JO Ssaippy 006G+ VNIdOH | Jeyng areped AONI
uononJsu| sbe|4
XN Jo ssaIppy 00 00 00 00| 00 00 00IADSAS-dO [9poD uid|Al ured | 9ADNI 8Y} JO SsaIppy 4051 VNIdOH 18Uu0D ADNI
uononusu| 00 00 1sbe|4
XN Jo ssaIppy 00 00 00 00| z2sPe|d|:aDSAS-dO [9p0D uid|Al ured | 9ADNI 8Y} JO SsaIppy vOS| VNIdOH 1de2oy ADNI
uononJsu| sbe|q
XN Jo SsaIppy MEOSIN Jo ssaippy | 00 00 00IAOSAS-dO [9p0D uid|Al ured | GADNI 8Y} JO SsaIppy 60S1 VNIdOH abind ADNI
uonoNJIsU| sbe|4
XN Jo ssaIppy MEIOSIN 4O SS8IpPY | 00 00 00IADSAS-dD [9p0D uid|Al Ured | GADNI dY} JO SsaIppy 80G1 VNIdOH woley ADNI
uononJIsu| sbe|4
XN Jo SsaIppy MIOSIN JO SSaIppy 00 00 00 00 [9p0D uid|Al ured | 9ADNI 8y} JO SsaIppy L0S1 VNIdOH | uonsidwo) isal ADNI
oL 8l vl ol 2 v (xay) 135440
v+N €+N CN L+N N
934 4O SINILINOD | 93H 40 SINILNOOD| 9D3H 40 SINILNOO| H3H 4O SINILNOD| H3IH 40 SINILNOD ai 3ovHL 37NAOW INVN

z/NM: Diagnosis Guide

222

Trace Table Codes

dYHO-93IM
ILI3-g3am
MIgxi [974d0-93IM (nsn) avi-gam Mgg3IM INSA
ADNI 8} Jo SsaIppy INN4-g3M | Al Yred 1(SDD) al yred |3AOW-G3IMI00I00 | MAVNS 8U JO Ssaippy €19l XOAdOH ut Jou3 21607 SO0
N1
saweunT| 00 001(SOD) Al Yred aweuleN 2ol LOAdOH | 104 1D3INNOD SO0
Migxi zlanv-di (nsn) aje|dwo)
ADNI JO ssaippy [LLIANV-dII00 00 | Al Yred ((SOD) Al Yred | IAOW-G3MIO0 00 00 | MEVYNS 8y} JO sselppy HLOL OOAdOH abessa|y SO0
NSA
puesn INSA| 00 001(SDD) al ured 00lereq 48sni0o 00 00 00 00 00 0191 1OAdOH woly 43NS SO0
LINITOSIN INSA
puesn INSA 1(SD0) al ured Jawi1|00 00 00 00 00 00 3091 1OAdOH | 40} 1D3INNOD SO0
ADAdOH
dVYHO-93IM MOAdOH
IL1a3-93M SOAdOH
MIgx| 1974d0-93IM (nsA) avi-gaam HOAdOH INSA
ADNI 8} Jo ssalppy INN4-93M | Al ured (SO2) al uled I3AOIN-G3MI00 00 | MFVYNS 8u} Jo ssalppy 0091 OOAdOH wolj A1d3d SO0
dYHO-93IM
IL1a3-93M
MIgx| 1974d0-93IM (nsA) avi-gam Mgg3Im SO0
ADNI 8} JO ssalppy INNZ-93M | Al ured (SO2) al uled |3AOW-93MI00 00 | MFVYNS 8u} JO Sseippy 9091 dOAdOH ur Jou3 21607 SO
ZONdOH
(nsn) , niyy | seihq XOAdOH
aweun | 4| ured (SO2) al yed ‘sweuieN|ereq Jesn V09l LOAdOH 43A3S SO0
HYHO-93IM
IL1a3-93M
Miaxi REEREN (nsA) alvi-gam XOAdOH
ADNI 8} Jo ssalppy INN4-g3M | Al Yied 1(SDD) al yred I3AOIN-G3MI00 00 | MEFVYNS 8U} JO ssalppy 6091 ANOAdOH Aem-z AN3S SO0
dYHO-93IM
IL1a3-93M
Mgx| 1974d0-93IM (nsA) avi-gam XOAdOH
ADNI U} Jo ssalppy INN4-g3M | Al ured (SO2) al uled |3AOIN-G3MI00 00 | MFVNS 8U} Jo ssalppy 8091 AOAdOH Aem-| AN3S SO0
dYHO-93IM
IL1a3-93M
Mgx| 1974d0-93IM (nsA) avi-gam
ADNI 8} Jo ssalppy INNZ4-g3M | Al ured [(SO2) al uled |3AOW-93MI00 00 | MFVYNS 8u} JO Sseippy 9091 ADAdOH Ald3d SO0
oL 8l vl oL o) v (xay) 135440
+N €+N N L+N N
H3Y 40 SINILNOD| H3H 40 SINILNOD| H3IH 40 SINIINOD| H3IH 40 SINILINOD| 9H3H 40 SINILNOD ai 3ovylL 37naon JNVN

223

Appendix C. Trace Table Codes

Trace Table Codes

(ed) (2d)
%Se enenp O1ao %Se enenp O1ao 8poQ uonoung (aIs) ai ;euueyogng 901 OODAdOH| (enuip) | DO VOIS
(ed) (2d)
%Se enenp O1ao %SeN enenp O1ao 8poQ uonoung (ais) ai ;euueyogng S0LL OOAdOH | (fenuIp) 0 D0 VOIS
(ed) (2d)
%Se enenp O1do %Se enenp O1do 8poQ uonound | AIAAIAY/AIAAIAA Y0LL 10OIdOH (reed) € 00 VOIS
(ed) (ed)
%se enenp OI1do %se enenp O1do 8poQ uonound | AIAAIAY/AIAAIAA €0LL 10OIdOH (reed) | 00 VOIS
(ed) (ed)
%Se enenp OI1do %Se enenp OI1do 8poQ uonound | AIAAIAY/AIAAIAA 20LL 1OIdOH (reed) 0 00 VOIS
0000/ 00 sbe|4 sie1S loug /
piop Hodey Jou3 | JequinN Jeyng O1aD M3N 81BiS AJdd MFOI0 0000/A3AAIAY LOLL OODAdOH | 8buey) sjeig enenp
0000/ 00 sbe|4 srels lejsuel] ejeq /
JaquinN Jeyng OI1dD M3N 81BiS A3Hd MFoID 0000/A3AA3ay 00L} ODAdOH | 8bueyd ejeig enenp
dYHO-93IM
ILI3-g3am divi-gam
MIgxi [974d0-93IM (nsn) [3AON-g3IM XOAdOH loug
ADNI 8} Jo SsaIppy INN4-g3M | Al Yred 1(SDD) al yred 10013A0DY-dI | MEVNS 8u} Jo Ssaippy 6891 AOAdOH Aem-z AN3S SO0
HYHO-93IM
ILII-g3am aivi-gam
Mgxi 1974dD0-93IM (nsA) |3AON-g3IM XOAdOH loug
ADNI 8} Jo ssalppy INN4-g3M | Al Yred 1(SOD) al yred 100/3A00H-dI | MEVYNS 8u} Jo Ssaippy 8891 AOAdOH Aem-1 AN3S SO0
dVYHO-93IM
IL1a3-93M divi-gam
M1axi [974d0-93IM (nsA) |3AON-g93IM
ADNI U} Jo ssalppy INN4-93M | Al Ured (SO2) al uled 10013A02Y-dI | ¥IVYNS 8y} JO ssaippy 9891 AOAdOH 1ol A1d3d SO0
dYHO-93IM
IL1a3-93M divi-gam
M1axi [974d40-93IM (nsA) [3AON-g93IM
ADNI U} Jo ssalppy INN4-93M | Al Ured [(SO2) al uled 100/13A02Y-dI | ¥IVYNS U} JO ssaippy ¥891 dOAdOH | Jou3 IAIFO3Y SOO
L iy 0013a024-dI S1 iy MOAdOH
0 selAq ‘ereq 1dedoy 1(SD0) al ured 8 salAq ‘ereq 1dedoy 0891 1OAdOH | 4043 14300V SO0
SsaIppy uononsu| 200XOA
MAgNA uaun) 1se Jo ssalppy 00 00 00 00 00 00 00 00 00 00 00 00 5191 XONdOH pueqy KOS SO0
dYHO-93IM
IL1a3-93M
MIgx| 1974d0-93IM divi-gam JuswuolIAUT
ADNI 8} Jo ssalppy INN4-93M | 00 001(SDD) al uled I3AOIN-93MI00 00 00 00 00 00 v191 dOAdOH Jasn ur Jou3z SO0
ol 8l vl ol 20 v (xay) 135440
v+N €+N TN L+N N
H3Y 40 SINILNOD | H3H 40 SINILNOD| H3IH 40 SINIINOD| HIH 40 SINILNOD| 9H3H 40 SINILNOD ai 3ovylL ITnaon JNVN

z/NM: Diagnosis Guide

224

Trace Table Codes

INdVd-WOD SOAdOH
INHVYdE-NOD HOAdOH
(addo) [DV14a-WOD OOAdOH MANOD
SsaIppy MaAIaY MEANA uoneunseq MAINA Joreuibuo ILV1S-WOD ssaIppy MIINOD 0022 0OD0dOH MOVLS {0 aav
y=pazifeniu| 10N
Ured 0=pazileniu| yred aldHO anfeA MHO 00 00 00 00 00 00 00 00 elt HdOdOH | (MHOLS) MHD 8l01S
(My2) 00 00 uoneuIWIL)
piop Hoday |suuey) 00 00 00 00| 00 00 40 NIHOWXHd 00 00 00 00 00 00 00 00 eoal D44dOH 1e 308y [puuRy)
00

SSeIppY PI0o8Y | 00 00 00 40 SSIPPY 00 00 10

00 00 00 00 00 00 00 00 o3 6o weyshs ¥oo|g 8d1eq [eed | gNSAIAHIAIAAIAY zoal Od4HdOH %o8yQ [puueyd
00

00 00 00 Jo Jejewered (Md2) 308U
00 00 00 00 | Induj 308yD BuUIYdeN | PIOM HodeyY |suueyd 00 00 00 00 00 00 00 00 Loat O4HdOH | @ulyoe peieleyd O/

(v pue (24dD) (L4dD) 19DALH-0I 00 00 10
£ddD) MDD buijred 00 00 0019V 14-HOlI [TA1034-01 | gNSAIadIAIaAIad 2001 3AYdoH uondeox3 Hun

M9HALH-OI 00 00 10
MDD bBuijred 00 00 0019V 14-HOlI [TA1D3Y-01 | gnSAIadIAIaAIad Kolo]! IYH1dOH %o8y0 Hun
(MSdann) (LavoIanA) | LSNIGWA 197401-ANA uondealsyul
MSd 1sen9|A ssaippy puessdo [3AO2I-ANA 00 00 00 00 LV NYMdOH 3IS [eNUIA
(MSdann) ssalppy 9po 3IS
MSd 1Sen9/A MEANWA 1sens/y .NYM.DI100 00 00 00 00 00V | NYMdOH [BNUIA Ul Jesn uny

ureyo
anfep Aejeq swilL MIAWA aU} U0 M1gdA 1siid HAHdA 0.1 IVAdOH Bulliod d1v 1ee@
ureyo Sjuang
anfep Aejeq swiL MIAWA ay} U0 M1gdA isiid HAHdA 0.1 IVAdOH dIV [eay 40} |jod
I~ €0
seikg MSd PIO O/l seikg MSd PIO O/l HSNNYX4d [eassiu] Aeje@ swil piop @l uondnuisiu VOLL IVAdOH | uondnuisjuj serdepy
(ed) (ed)
%se enenp O1ad YSe ensnp OI1dD 8poD uonound | (AIS) Al 1euUUBYOQNS 601 OOAdOH | (1BnuIA) 2 DD VOIS
(ed) (ed)

%se enenp O1ad YSeN @nenp OI1dD 8poD uonound | AIAAIAY/AIAAIAA 80LL 10IdOH (reed) 2 00 VOIS

(e4) (24) (aisanzan)
%Se enenp 01ao YSEN @nenD OIdD 8po) uonoung al |euueyogng 101 OOAdOH | (lenuip) € DD VOIS
oL 8l vl oL o) v (xay) 135440

+N €+N N L+N N
H3Y 40 SINILNOD| H3H 40 SINILNOD| H3IH 40 SINIINOD| H3IH 40 SINILINOD| 9H3H 40 SINILNOD ai 3ovylL 37naon JNVN

225

Appendix C. Trace Table Codes

Trace Table Codes

1V1SO-aNA

(enjep 10013 LVLS-ANA SMLOHAWA 1
[enu) ALHdadwA sseIppy MIAWA |I3dAL-QNA -10- HdSSMAWNA 00ze MLSdOH | yoredsiq o} Jesn ppy
(ssa1ppy ssaIppy MFOH1L/MEHOI
1X3) YHIGOH1IVHIHOI MFOHLIMEHOI sseIppyY MGANA ¢111100100100 . IND 010€ gSAdOoH Yoejsun
SsaIppy
yoels Bunsenbey ssaIppy e LI LSITS-ANA
aunnoJ Buie MEOHLIMGHOI sseIppy MEAWA |31V1S-ANAIO0 MO 000€ MLSdOH | MFOHL/MEHOI 081
SSalppy sWeN JaAlg 921neQq
SIY SSaIppy [eay 89e) (gSAZS) eolteanes Ssalppy [eay J9|eD uoloun4 Jo ssalppy 0902 (snouep) | ur uiney uonound D
a|g®e} g jewlo 89S 0vO¢
ssalppy
00 00 00 00| Ssaippy [eey 89|eD (aSAZS) eeieenes sseippy [eey Jo|[ed lapesH uonound 0602 (snouep) uiniey uonound 9
(Y IMNTIX4d) (13AAVS) (€1HdD) ssaippy (xxx.0) al (S143Avs)
UX3 [eey o9|[eD SsaIppYy [esy Ja|[eD MEAVS pauiniey | 8|NPo winiey 3 00 8po) uinjey 0202 HASJOH uiney ([eQ 8007
(P IMNTIX4d) (v 13AVS) (e14dD) ssaippy (xxx.0) al (S143nvs)
UX3 |eey o9|[eD SsaIppY [esy J9|[eD MEAVS pauinidy | 8NPo winiey 3 00 8poQ uiney 0102 HASdOH | winey [[eD 108.1pu|
(P IMNTIX4d) (v LHIAVS) sseippy (E14dD) ssaippy | MSBIN XXX,O dl Boid
Ux3 |eey 89|[eD SsaIppY |esy J9|[eD MEAVS pauindy | 8|NPo winiey 3 00 (G1r93anvs) wney 0002 OASJOH | Bateanes-Ui-uiniey
SSalppy sweN JaAlg 921neQq
00 00 00 00| SS8IPPY [edY ©8|[eD (aSAZS) esseenes sseippy [eey J8|ed uonouny Jo ssaIppy ovse (snouep) ur [reQ uonoung 9
SsaIppy
aweN uonouny SsaIppy [esy 89|[e) (aSAZS) eoseenes sseippy [eey J8|ed 00 00 00 00 0682 (snouep) IreQ uonound O
(S193nvs) (CARSEINGS)] (erddo) XXX.D
SsaIppy [esy 89|[e) SS8IPPY [edY Jo|[eD | SSIPPY MAAVS MEN ‘Al eINpPo Jajed (2ddD) H3H NYvd 0282 OASdOH 1senbey (e [e007
(S1H3AVS) sseippy (y1H3AVS) (e1ddD) XXX.O
M4l [eay o9|[eD SSBIPPY [e8Y J9|[eD | SSIPPY MAAVS MON ‘Al ®INPoN Jaj[eD (24dD) HD3H Ndvd 0182 ONSdOH | 1senbey |[eD 108.1pu]
(S1rH3aAvs) (yrH3AVS) (e1ddm) XXX.0
SSaIPpY [eNUIA ©8|[eD SS8IPPY [e8Y J9][eD | SSIPPY MAAVS MON al 8Inpo Jejied (eddD) D3H NYvd 0082 OASdOH | EaJeaneS-Uum-Ied
uolje|suenun
MOO petejsuel] iseny $S8IPPY MOD ANN, 00 00 00 00 0052 INNdOH O/1 1senn
1IVMOAWA
ILIVMOAWA
3SVAITLO4DaNA DVY14-aso puBWWO)
PUBWIWIOY poteIABIqaY [TLO4DANA 3SYd |I3dAL-ASDI00 00 00 00 00 00 L0g2 N4OdOH d0 emndex3
ol 8l vl ol 20 v (xay) 135440
v+N €+N TN L+N N
H3Y 40 SINILNOD | H3H 40 SINILNOD| H3IH 40 SINIINOD| HIH 40 SINILNOD| 9H3H 40 SINILNOD ai 3ovylL ITnaon JNVN

z/NM: Diagnosis Guide

226

Trace Table Codes

CARSEINGS)] (L1HdD) ssaippy | (01HdD) 10} perejsues) sinsey
J8|[e) Jo sseippy MEANA peydredsia sseIppY MIAWA | (2HdD) sseippy [eeY | (1ddD) Sseippy [enUIA 000t H1ddOH uone|suell Hid
(84dD) poaAIgoaY
(MSOdSAS) ssaippy (94dD) (1H3IAVS) dnusjuj Jsjjosuo)
oolg sniels Od (ZHdD) 00 00 00 00 | SS2IPPY Y00|g Bred Od (S4dD) 00 00 00 00 (¥4dD) 00 00 00 00 440¢ HOddOH | 10S$8201d payoljosun
pauiniay
(MASOdSAS) ssaippy | (MFDIHSO) ssaippy (vMaaygdod) (SYANAHOd) SdS3y-aod 1senbay 8o1nI08
oolg snels Od ¥o0|g 1senbay Od | ssaIppy %00|g B1ed Od | SSIppY MEAWA eseg |adS34-addI00 00 G90¢ g0ddOH | J8]j03u0) 10ss8001d
pauiniay
(MISDOdSAS) ssaippy | (MFDIHSO) Ssaippy (IMHMIAYS) (SYaAHOd) SdS3d-aod 1senbey esoubelq
%o0|g snyels Od o0|g 1senbey Od | sseippy %00|d ered Od | SSeippy MIAWA oseg |adS34-aodio0 00 §50¢€ VOddOH | 48]|011u0) 10Ss800.d
(e ®ka) 0O peuels
(MASOdSAS) ssaippy | (OHOHSOd) sseippy (OdMHMJOH)VY OVIA (SYENAHOJ) (@Manoyod) isenbay |[e) 9oInMeS
xoolg snels Od Yooig 1senbey Od | ssalppy %o0ig eled Od MANA esegq pIOM puBWIWOD 010¢ g0ddOH | J8]j03u0D 10ss8201d
(e ®¥4q) 00 paueis
(MASOdSAS) ssaippy 0HOdSOd ssaippy (OdMHMJOH)Y HVIA (SYEINAHOJ) (@manoyod) 1senbey esoubelq
%o0|g snels Od ¥o0|g 1senbey Od | sseippy 3o0ig ered Od MIAWA eseg PIOM puBWIWO) 000€ VOddOH | 48]|011u0) 10Ss800.d
Ssalppy
yoelg Bunsenbay payoels 00ILSITS-ANA
aunnoy Buljien Buteg ug Mom sseIppY MIAWA |3LV.LS-AINAIOO 00M M0 00.€ M1SdOH Sug MIOM Xoels
(NdOLMINYS) alels
0 0 0| snNdO Buniem jo ysep 0 0G9¢ IVMdOH Jem psjqeus Jsjug
D14MA-ANA
|LV.LSH-ANA
MEANA pelos|es XXX.0 [LO1AI-anNA
ssaIppy 8|npolN Bunix3 000000 00| Apuaun) jo sselppy | Al 8NPON Bunx3100 [3LVLS-ANA 009¢ dSAadoH | Jeydledsiq ayi o3 1x3
(Mmsdann) LSNIAWA LHdD uondsoseil]
MSd 1senn ssalppy puelsdQ 194701-AINAI00 1s8NnH Jo s ¥0Ge NdddOH uonon.suj
(Mmsdann) uononuisu|
MSd isenn 00 00 00 00 | IAODI-AWAIOO 00 00 00 00 00 00 00S€ NNYdOH 10N ‘uondsoieiu]
(ssauppy IN4DdOH
UX3) GLEX3dO $S2IPPY MF3dD $s2IPPY MAAWA | DHOS-X3dDI00 00 00 . OND olee gSAdoH Mg3d0 @oeisun
ssaIppy OHOS-X3dD
yoelg Bunsenbey ILSITS-ANA
aunnoy buled ssaippy MF3dO ssaIppy MFAWA |31V1S-ANAIO0 MDD 00ge MLSdOH Mg3dO »oeis
1V1SO-AnA
(enrep 10013 LV.LS-ANA SMLOHAWA 1sI7 yojedsia
[euld) ALHdAdNA sseIppy MIANA |IdAL-AQNA -10- HdSSMANA oLze M1SdOH wouy Jesn doia
oL 8l vl oL o) v (xay) 135440
+N €+N N L+N N
H3Y 40 SINILNOD| H3H 40 SINILNOD| H3IH 40 SINIINOD| H3IH 40 SINILINOD| 9H3H 40 SINILNOD ai 3ovylL 37naon JNVN

227

Appendix C. Trace Table Codes

Trace Table Codes

‘6oid ‘ueyo ui

‘Bae %o0|g MDD 91e00T

vg4 iseT Jo ‘Bie

NSIPIUIA 40} AI YseH

Anug
Joje|nwis yun |oluod

HHOD MOD X998 ise $SIPPY MFL104 $S8IPPY MGHOI | Mequinu 8d1neq [BNUIA sseIppy MGAWA OLlYy S14dOH 8yoeD YSIPIUIN
(yory/z) ssaippy
MIOAS (06€/¥ST) 00I2DVT4AVYS SsaIPPY MGHOL als-uoN
SS8IPPY MAAVS [OV14AVS Anuz eiqel yseH AIMHOL Aoy yseH ssaIppy AJAA 80LY | INAdOH IL4dOH se Aoy O/ DA
uno) (OLX1SWO1) (HO1SXIOL)
dooT 10129V IdINDL auog MgHOL 8yoe) JHOLSX 8yoe) JHOLSX ANAdOH ele|dwo)
1DVI4INDOL 1seT Jo ssalppy peleleQ JequinN jo 9ZIS [enjoY lo} 8713 1ebliel L0LY AL4dOH | [ee1S IHOLSX DA
(NH4.LSINOL) JHOLSX (NIVINWOL) 8z1S ayoen AWHdOH aje|dwo)
jul0d swinsey ueos peleleQ JequinN 0] PaAOIA JequinN 8yoe) UlB|\ [enjoy urep Joy ozs yebrel QL AL4dOH [eel1s urely DA
29714004d
(MEAVS) MG3dD0ND 1019V 14004d SS8IPPY MGHOL [eueseq
$S2IPPY MF3dD OV 14MLS Anuz eiqel yseH AIMHOL Aoy yseH SS2IPPY dwnsay SOy H14dOH ‘8yoeD YSIPIUIN
(Yoav/z) ssaippy
MEOAS (06€/vS3) X1davHOL1 dl ssalppy MgHOL LAAMIHOL 8)9|dwo) O/l
SS8IPPY MIAVYS | 80oedS ssaippy 8yoe) Aiu3 ejqel yseH AIMHOL Aoy yseH eleq Jeuwlio yoeil ¥0LY | INAdOH IL4dOH | SSIN 8yoeD YsIpluly
(yoay/z) ssaippy 29714004dd
MIOAS (06€/¥ST) 1019V 14004d SS9IPPY MFHOL pepeeN O/
SS8IPPY MAAVS [OV14MLS Anuz eiqel yseH AIMHOL Aoy yseH ssaIppY AJAA 0] % HL14dOH | SSIA 8YoeD 3SIPIUIN
2974004d
(yory/z) ssaippy [AOONSY3aY
MIOAS (06€/¥ST) 1DV 14004d SsaIppPY MGHOL £€=00 ‘pelie pesy
SS8IPPY MAAVYS [OV14MLS Anu3 ejqel yseH AIMHOL Aoy yseH $saIppY AJAA 201y HL14dOH | SSIA 8YoeD 3SIPIUIN
(MEDAS) ssaippy 29174004d 0=00
MEOAS (06€/vS3) 019V 14004d ssalppy MHOL 1NAMLIHOL ‘ajoldwo) peay
SsaIPPY MAAVS DOV14MLS Anu3 e|qel yseH AIMHOL Aoy yseH eleq 1euwlo yoeil L0l HL14dOH | SSIA 8yoeD sIpIul
gpueiadQ|Lpuesedo MENMSL dINJdOH)ne4
ssaIppy MGHOL ssaippy AJAA |sBej4|equinN gy SS2IPPY 400|g XSEL | 8YyoeD Ul Ssaippy }ined 00L¥ d1d4dOH | 8bed ayoe)d ysipiuly
o|ge} g lewlo 89S 0c0ov
yoojun Bunjoojun abeiorg
SSaIppY Sowel [eay 0} SS8IPPY [BNUIA ssaIppy MGANA SS8IppYy SJo|ed 0Z€0 10 ¥X00 LLOY SINADOH BUIYJBIN [BNUIA
Bunoo abeiols
SS8IPPY S, oWeI [edY | %007 0} SSaIPPY [ENHIA ssaIppy MGAWA SsaIppy SJo|ed 0.€0 10 ¥X00 oLov SINADOH BUIYDBIN [BNHIA
o|ge} g lewlo 89S ¥00¥
o|ge} g lewlo 993 €007
ol 8l vl ol 20 v (xay) 135440
v+N €+N TN L+N N
534 40 SLINILNOD | DH3H 40 SINILNOO| 9H3IH 40 SINILNOD | H3H 40 SLNILNOOD| H3H 40 SINILNOD ai 3ovylL ITnaon JNVN

z/NM: Diagnosis Guide

228

Trace Table Codes

k=00 ‘HOSIN
1SISSY UoNNoexXg

00 00 00 00 00 00 00 00 00 00 00 00 $S8IppY MadOIl | 9NSAIAHIAIAAIAY 1209 |LddOH aAneldie] Lelg
(-1 spiom 0=00 ‘HOSIN
MOWd) SPIOA [043U0D 1SISSy uolnoexg
9 pIOM MOINC Juswabeuey uied | gNSAIAYIAIAAIAY 0209 I1LddOH aAnaidio| velrs
€=00 ‘HOSH
1SISSY UoiINoex3
00 00 00 00 00 00 00 00 00 00 00 00 $S8IppyY MgdOIl | 9NSAIAHIAIAAIAY €109 |LddOH aAneldie] Lelg
2=00 ‘HOSH
1SISSY UOIIN2ax3
00 00 00 00 00 00 00 00 00 00 00 00 $saippy MAGHOI | 9NSAIAHIAIAAIAY 40 I1LddOH aAnaidio| vels
1=00 ‘HOSH
1SISSY UoIINoaX3
00 00 00 00 00 00 00 00 00 00 00 00 $S8IppY MadOl | 9NSAIAHIAIAAIAY LLOS ILddOH aAneldie] Lels
0=09 ‘HOSH
1SISSY UOIIN2aX3
00 00 00 00 00 00 00 00 00 00 00 00 $salippy MAGHOI | 9NSAIAHIAIAAIAY 0+0S ILddOH aAnaidio| vels
€=00 ‘HOSO
1SISSY UoiINoexg
00 00 00 00 00 00 00 00 00 00 00 00 $s8Ippy MgdOIl | 9NSA3IAHIAIAAIAY €009 ILddOH aAieldie] LBl
0=09 ‘HOSO
1SISSY UOIIN2aX3
00 00 00 00 00 00 00 00 00 00 00 00 $salippy MAGHOI | 9NSAIAHIAIAAIAY 0009 I1LddOH aAnaidio| vels
avadoH OMO0T19«
¥O.LMS04albyoaa 990dOH lo esoubelq
1201MS0da | (QISHO9a) A3A-A3AA d19dOH woJ} synsaey
(0 40) 1s1| ssauppy | OHOAA 10019921S 300|g [HOLMSO49d | dl UseH|ddAeq [enUIA | SS8IpPVY MAANA HiYd 9Ly NI9dOH 8yoeD YSIPIUIN
(Lvaxiinq) (MgHOLLAQ) 0oIMo014.
(passao9oe j0U Yoel))i 0 (passao9oe jou Yoe)) (ATMLALIAQ) AJA-AIAA Jo asoubelq Joy abind
10) el Jewiod oell | i 0 10) SSaIPPY HEHOL Aoy sso00y MoeiL 00 00ledIA8 [eNUIA | SS8IppVY MAAWNA HiY Shiv NIgGdOH | YoelL 8yoeD 3sIplulN
001¢OV14104 (jnysseoong) 1x3
I3dALS104 JSIPIUIA 104 dI YseH Jore|nwis 1un |ouo)
OV14104 $Salppy M9104 $S8IPPY MGHOI | [equinu 8diasq [BNUIA $Salppy MAAINA 4584 S14d0H 8yoeD YsIPIUIN
00129v14104 (Wogy) 1x3
I3dALS104 ASIpIUI 104 dI yseH Jore|nwis yun |oluo)
OV14104 $salppy M9.104 $S8IppY MGHOI | [Hequinu 8diAeq [eNUIA $salppy MAAINA FELY 314d0H 8yoeD YsIpIuIN
o]} 8l vi oL 2 v (xay) 135440

v+N €+N ¢tN I+N N
D34 40 SINIINOD | 934 40 SINILNOOD | H3H 40 SINILNOD | 9H3H 40 SINILINOD| 93H 40 SLNILNOD ai 30vdl 37NAON JNVN

229

Appendix C. Trace Table Codes

Trace Table Codes

00 00 00 00

00 00 00 00

00 00 00 00

$S3IppPY Madol

aNSA3adIAIan3aad

1809

|LddOH

1=00 ‘HOSH
1SISSY UOIINoaX]
oAljaldiaiu] LelS

00 00 00 00

00 00 00 00

00 00 00 00

SSaIPPY MaHOI

aNSA3IAHIAIAAIAY

0809

ILddOH

0=00 ‘HOSH
1SISSY UOIINOaX]
aAljaIdialu] YelS

00 00 00 00

piop @l ¥dnusul

Ja1eweled 1dnusu)

al weisAsgng

00 00 00 00

1909

|LddOH

=00
‘|dL IsIssy uonnoax3
aAlaidiaiu] LelS

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

0909

ILddOH

0=00
‘|dL 1SISSy uonnoex3
annaidiau] Uelg

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

aNSA3adIAIan3aad

€609

|LddOH

€=00 ‘HOSL
1SISSY UOIINoeX]
aAlaidiaiu] UelS

(Mms3)
PJOAA SNIBIS papualx]

(MSOS) piom
snjeis |suueyoqgng

aNSA3IAdIAIAAIAY

1G0S

ILddOH

I=00 ‘HOSL
ISISSY UOIINOaX]
aAljaidiaiu] YelS

(Mms3)
PIOM sniels pepusixy

(MSOS) piom
snjels |suueyogng

aNSA3adIAIan3ad

0509

|LddOH

0=00 ‘HOSL
1SISSY UOINdaX3
annaidisiu] Yeis

00 00 00 00

00 00 00 00

00 00 00 00

SS3IPPY MadOl

aNSA3IAdIAIAAIAY

€€09

ILddOH

€=00 ‘HOSS
1SISSY UOIINO9X]
aAljaIdialu] YelIS

00 00 00 00

00 00 00 00

00 00 00 00

$S3IpPY MadOl

aNSA3adIAIan3aad

2¢e09

|1LddOH

2=00 ‘HOSS
1SISSY UOINd8X3
annaidisiu] Yeis

00 00 00 00

00 00 00 00

00 00 00 00

SS3IPPY MadOl

aNSA3IAdIAIAAIAY

L€0S

ILddOH

k=00 ‘HOSS
ISISSY UOIINO9X]
aAljaIdialu] YelIS

(8H0) o019
1senbay uonessdo

$S3IpPY MadOl

aNSA3adIAIan3ad

0€0S

|LddOH

0=00 ‘HOSS
1SISSY UOIINd8X3
aAnaidisiu] Yeis

00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

aNSA3IAdIAIAAIAY

€209

ILddOH

€=00 ‘HOS
ISISSY UOIINOaX]
aAljaIdiaiu] YelIS

00 00 00 00

00 00 00 00

00 00 00 00

$S3IppPY MadOl

aNsSA3adiAIan3aad

2209

|LddOH

2=00 ‘HOSIN
1SISSY UOIINd8X]
annaidisiu] Yeis

Jl

8l

vi

1]

o]

v

(xay) 135440

v+N
934 40 SLNILNOD

€+N
934 40 SLN3ILNOD

¢+N
934 40 SLNILNOD

LN
934 40 SLNILNOD

N
934 40 SLNILNOD

al 30vdl

3TNAON

JNVN

z/NM: Diagnosis Guide

230

Trace Table Codes

(¢ #dA1) £=00 ‘HOSIN
1SISSY uolindex3y

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ansA3adied €3 €265 ILddOH annaidialu] Lel1s
(e 9dAy) 2=00 ‘HOSIN
1SISSY UoiINoax3
00 00 00 00 00 00 00 00 00 00 00 00 $S8IPPY MGHOI gnsSA3adied €3 2285 ILddOH annaidiau] LelIg
(g 8dAy) 1=00 ‘HOSIN
1SISSY uolINoax3
00 00 00 00 00 00 00 00 00 00 00 00 $S8IPPY MFHOI ansA3adied €3 12eS ILddOH annaidialu] LelIS
(e-1 spiom (e #dAy) 0=00 ‘HOSIN
MOWJ) SPIop [0uoD 1SISSY UONN98Xg
9 pIoM MO Juswebeuely yred gnsSA3adied €3 02€S ILddOH anpaidiaiu] LelIs
(e 8dAy) =00 ‘HOSH
1SISSY uUolINoax3
00 00 00 00 00 00 00 00 00 00 00 00 $S8IPPY MFHOI gnsA3adied €3 €1€G ILddOH annaidielu] LelIs
(e #dAY) 2=00 ‘HOSH
1SISSY UoiNoax3
00 00 00 00 00 00 00 00 00 00 00 00 $s8IPPY MGHOI gnsA3adied €3 zles ILddOH annaidiau] Lel1s
(€ @dAY) 1=00 ‘HOSH
1SISSY UolINoax3
00 00 00 00 00 00 00 00 00 00 00 00 $S8IPPY MFHOI ansA3adied €3 LLES ILddOH annaidielu] Lel1S
(e @dA}) 0=00 ‘HOSH
1SISSY UoIINoaX3
00 00 00 00 00 00 00 00 00 00 00 00 $s8IPPY MGHOI gnsSA3adied €3 0les ILddOH annaidialu] Lel1s
(e @dA) €=00 ‘HOSO
1SISSY UoIINoax3
00 00 00 00 00 00 00 00 00 00 00 00 $S8IPPY MGHOI gnsA3adied €3 £0€G ILddOH annaidieu] LelIS
(e #dAy) 0=00 ‘HOSD
1SISSY UOIINoaX3
00 00 00 00 00 00 00 00 00 00 00 00 $SIPPY MFHOI ansA3adied €3 00€g ILddOH annaidialu] LeIs
1senbay Oy |190UB)
1SISSY UoIINoaxg
00 00 00 00 00 00 00 00 8poD uinjey $saIpPY MFHO!I | 9NSA3IAHIAIAAIAY 0v0S XOIdOH annaidieu] LelIS
€=00 ‘HOSH
1SISSY UOIINoaxX3
00 00 00 00 00 00 00 00 00 00 00 00 $S2IPPY MFHOI | gNSAIAHIAIAAIaY €809 ILddOH annaidialu] Lel1s
2=00 ‘HOSH
1SISSY UoIINoax]
00 00 00 00 00 00 00 00 00 00 00 00 $saIppY MFHO!l | 9NSA3IAHIAIAAIAY 2805 ILddOH annaidiau] LelS
oL 8l vl oL o) v (xay) 135440

v+N €+N N L+N N
534 40 SLINILNOD | DH3H 40 SINILNOO| D3I 40 SINILNOD | H3IH 40 SLNILNOD| H3H 40 SINILNOD ai 3ovylL 37naon JNVN

231

Appendix C. Trace Table Codes

Trace Table Codes

8|qel g lewlo 883

9009

a|g®e} g jewlo 89S G009

8|ge] g 1Bwlod 88g ¥009

o|ge} g lewlo 89S €009

o|gel g lewlo 89S 1009
(g 2dAy) 1dnusyu)
ssalppy 1SISSY UOIINoaX3
MSd PIO O/ HSNNYX4d A3ad (A3ad)v ansA3adied €3 0€SS 1dIdOH annaidiaiu] LelIg

o|ge} g lewlo 89S 10SS
dnusiy)
ssalppy 1SISSY UoiINoax3
MSd PIO O/ HSNNYX4d A3ad (A3ad)v | 9nNSAIAdIAIaAIad 0055 1dIdOH anpaidiau] LelIg
1senbay O/
|ooue) |suueyoqns ¢
adA] 1sIssy uonnoax3
00 00 00 00 00 00 00 00 8po) uiniey $S8IPPY MGHOI ansA3adied €3 oves XOIdOH annaidiau] LelIg
(e 8dAy) =00 ‘HOSL
1SISSY uolINoax3
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ansA3adied €3 £G€9 ILddOH annaidialu] Lel1S
(e 2dAy) 1=00 'HOSL
(ms3) (MSOS) piom Isissy uonnoex3
PIOAN SNiBIS pepueix3 snjels |puueyogng ansA3adied €3 1GES ILddOH anpaidiaiu] LelIs
(e 8dAy) 0=00 ‘HOSL
(Mms3) (MSDS) piom 1sISsy uonnoaxg
PIOAA SNIBIS papuelx3 snjeig euueyogns gnsA3adied €3 0G€S ILddOH annaidielu] LelIS
(e 2dAy) €=00 ‘HOSS
1SISSY uonnoex3
00 00 00 00 00 00 00 00 00 00 00 00 $s8IPPY MGHOI gnsA3adied €3 £ees ILddOH annaidiau] LelIs
(e @dAY) 2=00 ‘HOSS
1SISSY UolINoax3
00 00 00 00 00 00 00 00 00 00 00 00 $S8IPPY MFHOI ansA3adied €3 2e8es ILddOH annaidielu] Lel1S
(e @dAy) =00 ‘HOSS
1SISSY uonnoex3
00 00 00 00 00 00 00 00 00 00 00 00 $s8IPPY MGHOI ansA3adied €3 LEES ILddOH annaidialu] Lel1s
(e @dAy) 0=00 ‘HOSS
(g40) »o0ig Isissy uonnoex3
1senbey uonesado $S8IPPY MGHOI gnsA3adied €3 0€€s ILddOH annaidieu] LelIS
ol 8l vl ol 2 v (xay) 135440

v+N €+N Z+N L+N N

534 40 SLINILNOD | DH3H 40 SINILNOO| 9H3IH 40 SINILNOD | H3H 40 SLNILNOD| H3H 40 SINILNOD al 3ovdlL 37NAOW INVN

z/NM: Diagnosis Guide

232

Trace Table Codes

yied
$S8IpPY ulnidy s.J9|[ed $s2IppY M93IAN $$9IPPY MaHL1d 00 V004 ANGdOH | uoneodiddy dO 308y
Jur e
$S9IPPY MAMNT| TdVIdAL I3AOCO3IAIN $$2IppPY M93AN $S9IPPY MaH1d | AIDSINIAN 19T4INNS 6002 HINOJOH | 104 abessa|y enanbeg
Juri e
$S3IPPY MAMNT| Td4VIdAL I3AOCO3IAIN $S2IppPY M93IAN $S9IPPY MaH1d | AIDSINIAIN 19T4INNS 800. SINOJOH | 104 abessa|y & enenp
ananp YoM
© wolj (Mg3an)
SSalppy uinyey sJa|en Joydouy ananp ssalppy Mg3AN 20 S00L ANddOH abesso|\ e 189
ananp
YoM € o} (Ma3an)
SSaIppY Uiy sa|eD Joyouy ananp ssalppy Mgaan ¥00. ANGdOH obessa|\ & ppy
uoissag Ayjioe4
uoledIUNWWOo)
al uoisses walshg-1am|
$S8IpPY ulnidy s.J9|[ed $$9IppY M93IAN 10 ssalppy MaHL1d +00 €002 ANddOH Ad MgH1d 81eoo
al yred yted Oddv
$S8IppY uiniey sJ8|ed $s2IppY M93AN 10 ssalppy MaHL1d [2010) 2002 ANddOH Ad MgH1d 81eoon
uied
$S8Ippy uiniey s.i9jed $S2IppPY M93AN $S9IPPY MaHL1d 00 000Z ANddOH AONI/OddV #984D
o|ge} g lewloH 993 G209
o|ge} g lewlo 89S ¥2c09
o|ge} g lewlo 89S €209
o|ge] g lewlo 89S 2209
o|ge) g lewloH 9983 1209
o|qe} g lewlo 98S 0209
o|ge} g lewlo 89S 9109
o|ge] g lewlo 89S G109
o|ge) g lewloH 99S 7109
o|ge} g lewlo 89S €109
o|ge} g lewlo 89S c¢h09
o|ge] g lewlo 89S LHO9
o|ge) g lewloH 89S 0109
o]} 8l vi oL 2 v (xay) 135440
N €+N ¢tN L+N N
D3H 40 SINIINOD | 93H 40 SLNILNOD| 93H 40 SINILNOD| H3H 40 SINILINOD| 934 40 SINILNOD ail 30v4dl 37NAOCN JNVN

233

Appendix C. Trace Table Codes

Trace Table Codes

(HoIvA3ay)

£=00 ‘[ouueyoqng

00 00 00 00 00 00 00 00 00 00 00 00 | SS8IPPY MGHOI @AY | gNSAIAHIAIAAIad £008 SOIdOH [eaibo Jes|n
(Holvaaay) 0=00 ‘leuueyogng
00 00 00 00 00 00 00 00 00 00 00 00 | SS8IPPY MGHOI @AY | gNSAIAHIAIAAIAY 0008 SOIdOH [eoibo Jes|n
AININXOVD
[MLNOXOVO
snjeisun IALOVXOVO ssaIppy 1dnus
|00IAIAAIAA |ANIAXOVO sselppy AJAA A sselppy AJAA X MGANA J8umo X 106/ ALOdOH payolosun O10A
AININXOVD
[MLNOXOVO
ybusTereq |sbey IALOVYXOVD SsaIppy
MDD [8poddo MDD |[ANIdXOVD ssalppy AJAA A $S8IPPY AJAA X MIAWA Jeumo X 9062 DL10dOH | uoneinwis O/l O10A
ININADVYO 1ININXOVO
IMLNOADVO [MLNOXOVO
IALOVADVO IALOVXOVD ssalppy
[ANIdADVD IANIdXOVD ssalppy AJAA A $S8IPPY AJAA X MIAWA Jeumo X 5062 ALOdOH | 1858y Weishks D10A
LININADYD AININXOVO
IMLNOADVO IMLNOXOVO
IALOVADVO IALOVXOVD SSIPPY lesey
IANIJADVD [ANIdXOVO sselppy AJAA A $S8IPPY AJAA X MIAWA Jeumo X ¥06. ALOdOH 8088 OLOA
LININADVYD AININXOVD
IMLNOADVO IMLNOXOVO
IALOVADVO IALOVXOVD SsaIppy 108UU00sIq
[ANIdADVD |[AN3dXOVD $S8IppY AJAA A $S8IPPY AJAA X MIAWA J8umo X £06. ALOdOH soepslul O1DA
ssalppy
ssaIppy AJAA 186ieL | sseippy MEANA 1961eL sselppy AIAA A $S8IPPY AJAA X MEAWA 18umo X 2062 ALOdOH 8|dnoy O10A
LININADVD AININXOVD
IMLNOADVO ITLNOXOVO
IALOVADVO IALOVXOVD sselppy
[ANIJADVD |[ANIdXOVD $SaIppy AJAA A $S8IPPY AJAA X MIANA J8umo X 106Z ALOdOH uoeled O10A
ssalppy
00 00IAIAAIAA 00 00 00 00 00 00 00 00 $S8IPPY AJAA X MIAWA Jeumo X 0062 ALOdOH auieg O10A
ananp oM
e woly (MguvO)
SS8IppY UINdY S,Ja|[eD loyouy enenp $SIPPY MGHYD 20 000/ ANEdOH abessa|\ € 189
ananp
YIOM € 0} (MaHVvD)
$S8IpPpY uinjey s,l8|ed Joyouy enenp SSIPPY MFHYD 9002 ANEdOH abesso|\ & ppy
oL 8l vl ol 2 v (xay) 135440
v+N €+N TN L+N N
534 40 SLINILNOD | DH3H 40 SINILNOOD| 9H3IH 40 SINILNOD | H3H 40 SLNILNOOD| H3H 40 SINILNOD al 3ovdlL 37NAON ANYN

z/NM: Diagnosis Guide

234

Trace Table Codes

a|qe] g Jewlo 88g d44%8-1408
paAlgoay eleq
G1-0 seikg ereq esusg | INOSHOIIAIAAIAY 0408 141dOH asuag O/l [edifo
(HolvA3ay) €=00 ‘leuueyogng
00 00 00 00 00 00 00 00 00 00 00 00 | SS8IPPY MFHOI @AY | gNSAIAHIAIAAIAd €608 I41dOH [eoifo 1seL
(Mms3) (MSDS) piom 1=00 ‘louueyogns
PIOM SNIBIS PapusixXg Snjelg |auueyodns | gNSAIAYIAIAAIay 1508 I41dOH [eoifo 1sel
(Mms3) (MSDS) piom 0=00 ‘leuueyogng
PIOA SNIBIS papusixXg Snjelg jeuueyodns | gNSA3IAYIAIAAIaY 0508 I41dOH [eoifo 1sel
asussg
(a40) »ooig €=00 ‘[euueyogng
1senbay uonelado $S0IPPY MFHOI | 9gNSAIAHIAIAAIaY ge08 I41dOH [eoifo ueis
asueg
1=00 ‘leuueyogns
00 00 00 00 00 00 00 00 00 00 00 00 sselppy MgHOI | 9NSAIAYIAIAAIAY 6£08 I41dOH [eoibo ueis
asussg
(g40) »ooig ("HoIvAaay) 0=09 ‘[euueyognsg
1senbay uoneladO | ssaIPPY MFHOI 8AB0Y | dNSAIAYHIAIAAIAY 8€08 I41dOH [eoibo ueis
(a40) »ooig €=00 ‘|leuueyogng
1senbay uonelado $S9IPPY MFHOI | gNSAIAHIAIAAIaY €€08 SOIdOH [eoifo ueis
1=00 ‘leuueyogns
00 00 00 00 00 00 00 00 00 00 00 00 $S9IPPY MFHOI | gNSAIAHIAIAAIaY LE£08 SOIdOH [eoifo] eis
(ad0) o0ig (HolvA3ay) 0=00 ‘leuueyogng
1senbay uoneladQ | ssaIppy MFHOI oMY | dNSAIAYIAIAAIAY 0€08 SOIdOH [eoifo] veis
€=00 ‘leuueyogng
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00| 9NSAIAYHIAIAAIAY €208 SOIdOH [eaifo Ayipoiy
1=00 ‘louueyogns
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | GNSAIAHIAIAAIAH 1208 SOIdOH [ea1607 Ajipon
el

(MOINd) SpIop [04u0D 0=09 ‘[euueyagnsg
9 PIOM MOINd wewabeueN yred | gNSAIAHIAIAAIAY 0208 SOIdOH [eaibo Ayipoiy
(HolvA3ay) £=00 ‘leuueyogng
00 00 00 00 00 00 00 00 00 00 00 00 | SS8IPPY MGHOI @AY | gNSAIAHIAIAAIad €108 SOIdOH [eoibo yeH
(HolvA3ay) 1=00 ‘|suueyogng
00 00 00 00 00 00 00 00 00 00 00 00 | SS8IPPY MGHOI @AY | gNSAIAHIAIAAIad 1108 SOIdOH [eoibo7 yeH
(HolvA3ay) 0=09 ‘|]suueyogng
00 00 00 00 00 00 00 00 00 00 00 00 | SS8IPPY MFHOI @AY | gNSAIAHIAIAAIAY 0l08 SOIdOH [eoibo Jesjn
oL 8l vl oL 2 v (xay) 135440

v+N €+N N L+N N
534 40 SLINILNOD | DH3H 40 SINILNOO| 9H3IH 40 SINILNOD | H3IH 40 SLNILNOD| H3H 40 SINILNOD al 3ovdL 3T1NAOW INVN

235

Appendix C. Trace Table Codes

Trace Table Codes

aoel]

8x 8x 8x 8x 8x 8004 8x Beig soimes A
ool
8 8x 8 8+ 8x 2004 8x Beiq eo1neS NA
ool
8 8 8 8 8x 9004 8 Beiq eo1neS NA
aoel|
8x 8x 8x 8x 8x 5004 8x Beig so1nies INA
ool
8x 8x 8x 8x 8x 004 8x Beig so1nies INA
ool
8x 8x 8x 8x 8x €004 8x Beig soinies INA
9ol
8x 8x 8x 8x 8x 2004 8x Beig eoinies NA
ol
8x 8x 8x 8x 8x 1004 8x Beig eoimes A
ol
8x 8x 8x 8x 8x 0004 8x Beig soimes A

8|qe] g 1ewlo 89S 10D

o|ge} g lewlo 89S 0100

o|ge} g lewloH 89S 7059

9|ge] ¢ Jewlod 89S 0osg

ssalppy

doIs (00) MseN weiboid 18pI0 dDIS| SSeIppy 0} 10ss800Id woyj 10Ss820.d 003V dHSdOH uononisul d9IS

a|qe] g Jewlo 88g LLV6

o|ge} g lewlo 89S 00v6

o|ge] g lewlo 89S [010) 4]

o|ge) g lewloH 993 0€.8

o|ge} g lewlo 98S 0c/8

o|ge} g lewlo 89S 0€98

o|ge] g lewlo 89S 0298

9|gel g lewlo- 885 1058

ssalppy
MSd PIO O/I dSNNYXdd 300|g ®dIAe([esd | dNSAIAYIAIAAIAY 0058 1d1dOH 1dnusiul O/ 1821607
oL 8L vL oL 2 v (xau) 13s440
v+N €+N ¢+N L+N N

D34 40 SLIN3ILNOD 934 40 SLIN3ILNOD D34 40 SLIN3ILNOD 934 40 SLIN3ILNOD 934 40 SLIN3ILNOD al 30v4l ITNAOIN JNVN

z/NM: Diagnosis Guide

236

Trace Table Codes

SsaJippe uiniey s.J9|ed 00 00 00 00 SSaIpPY MGANA | 48]0 0} 3siid jo yibuaT | 1eso 0} isi|d jo ssaippy 00ov4 HdZdOH 1s1d Jesied Jes|Q
anjea J18||ed Jo ssaippe ux@ siy} 4o} isiid 00000000 sAeme (dON) ysiui4
TAINLIVHIX XXXXXXXX [eal ‘LY XXXXXXXX JO IPPE ‘LY XXXXXXXX sI anjep XxxxAAAA | Jaquinu §x3 Xxxx0000 0v64 NXZdOH aunnoy ux3 |1en
anjea J9||eo Jo ssaippe 1X® SIy} 1o} isi|d | swelurew o0y 3oeq uas
STIVILIX XXXXXXXX [eal ‘f LY XXXXXXXX JO IpPE ‘LY XXXXXXXX | 89P0 uinjay XXXX0000 | Jequnu UxX3 XXXX0000 0€64 NXZdOH ysiui4 ux3 jen
anjea J9||eo Jo ssaippe 1xa siyy Joy isid 9p0d uInjal 8y} Jo ysiui4
TAINLIVHDIX XXXXXXXX eal ‘f LY XXXXXXXX JO IpPE ‘LY XXXXXXXX saAley ylog XxxxAAAA | Jequinu 1x3 XXXX0000 0264 NXZdOH aulnnoy 1ux3 |1en
anjea J18||ed Jo ssaippe uxa sy} 4oy 1sid MadOX 8yl
1TAINLVHDIX XXXXXXXX [eal ‘f LY XXXXXXXX JO IpPE ‘LY XXXXXXXX JO SSBIPPY XXXXXXXX | Jaquinu UX3 XXXX0000 oL64 NXZdOH | Wels sunnoy ux3 |[ed
anjea J18||ed Jo ssaippe uxa sy} 4oy isid HX® syl Jo} Mg1IX
STIVOLIX XXXXXXXX [B8l ‘P LY XXXXXXXX 10 IPPE ‘LY XXXXXXXX O SSBIPPY XXXXXXXX | Jaquinu }IX3 XXXX0000 0064 NXZdDH Ue1S 1x3 [[eD
00 passadoid
00 00 00 0% 40 ‘500 | 00 00 00 40 (€1ddD) JaquinN an3gy | isnl @l einpoN aN3Igy
00 00 08 ‘00 00 00 00 $S8IpPY MAAVS $S8IPPY MAAINA | S! UUU BIBYM --, UUUD | SI XXX 8IBYM --XXX O 2084 dNSdOH ¥x3 dwnpdeus
00 00 (erddo) JequinN dN3gY dl 8InpoN dN3FV lolle weyshs ein
00 0t 10 s00 00 00 08 $S8IpPY MAAVS SSaIPPY MAAINA | S! UUU BIBYM --, UUUD | SI XXX 8IBYM --XXX O 1084 dNSJdOH paxoaul dwnpdeug
(erddo) JequinN dN3gY dl 8InpoN dN3FgY puewwoy ein
00 00 00 00 $S8IpPY MAAVS $S3IPPY MAAINA | S! UUU BIBYM --, UUUD | SI XXX BIBYM --XXX O 0084 dNSJdOH pasoaul dwnpdeug
9|qe) ¢ rewlo seS V0.4
9|ge) ¢ jewlo 88S 8024
o|ge} g lewlo 89S 9024
o|gel g lewlo 89S 024
MIANA s.swaishs 41dd0OH
popaau sawel} pusixa [enuin Bulumo ssalppy SSalppy awel SSalppy awel J1ddOH Juswysiuajday
abelo}s 8914 Jo JoquinN Jo ssaippe }g—|¢ sweld |eal)ig—-}¢g [enuIA JO jley moT [enuIA Jo jley ybiH 2024 41VdOH | Ppusix3 sbelols o9l
Bulpuen w08y
auiyoey Buung
00 40%4 HOWJOH in4 ebed soel]
obeyd (rewuo4
Xljold S J0ssa20.d | (DIDIN) @p0oD 1dnusiu) dV.1S) lossed0id Kianooay 10ssa001d
00 00 00 00 pejie Jo ssalppy 308YQ sulyoepy pejie Jo ssalppy Lovd HOWJOH dois 308y
paddoig
00 00 00 00 OION 00 00 00 00 00v4d HOWJOH %08YJ S! 10Ss820.d
ool
8x 8x 8x 8x 8x 6004 8 Beiq eo1neS INA
oL 8l vi oL 2 v (xay) 135440
v+N €+N ¢tN L+N N
D34 40 SINIINOD | 934 40 SINILNOOD | H3H 40 SINILNOD | 9H3H 40 SINILINOD| 93H 40 SLNILNOD ai 30vdl 37NAON JNVN

237

Appendix C. Trace Table Codes

Trace Table Codes

puaqy yos
O Bwi| 1e Jas uny jo
aweN oy} SI eeeeeeee

lequinN pusqy

dal 3aon

pueqy yos buung

alayp\ --.eeeeeeee,) SsaIppy MAAINA | S! uuu a1sypp --.uuu,D SI XXX 8I8YM --XXX.D 4444 NaVvdOH aoel] puadsng
anjeA anjeA Anug
00|20 OL JO PIOM pug | X200 QOL JO pIoMm Is| 00 00 00 00 00 00 00 00 00 00 00 00 3444 IL1dOH soel] dweig ewi|
pueqy 3os
+dVYNS+0 sseIpPY MIAWA | (#9-2€ sug) %2010 doL | (1€-0 sug) 32010 AOL 3344 NEVdOH | Jeyy odel] swnsay
ol 8l vl ol 20 v (xay) 135440
v+N €+N TN L+N N
H3Y 40 SINILNOD | H3H 40 SINILNOD| H3H 40 SINIFLNOD| H3IH 40 SINILNOD ai 3ovylL ITnaon JNVN

934 40 SLNILNOD

z/NM: Diagnosis Guide

238

Trace Table Codes

Notes:

1.

2.
3.

These fields are generated only by HCPPAH and HCPPAU. HCPVOD,
HCPVOS, and HCPVIR generate zeros (00 00 00 00).

CPSYSCD is filled in for non-APPC paths, Flags2 is filled in for APPC paths.

IORITRQSCHED - Bit seven in this field indicates whether this field contains the
address of the TRQBK (the bit is on) or the address of the IORBK (the bit is
off).

If CC equals 0, the PTHBK Address is traced. If CC does not equal 0, the
PTHBK could not be located and the path ID requested is traced.

If a system error invoked a soft ABEND, which was set to SNAPDUMP by the
SET ABEND command, a value of 80 00 00 00 will be present. A value of 40 00
00 00 will be present if invoked by the HCPABEND macro with SNAPDUMP as
the defined ABEND type.

For Diagnose X'18' results, this is the DBCMAXSZ block size.

This flag byte is dependent on the operation type as defined by DBCSWTC2.
* When DBCSWTC2 bit 5 is on (X'04"), this field contains DBCDOPER
When DBCSWTC2 bit 6 is on (X'02'), this field contains DBCBOPER
When DBCSWTC2 bit 7 is on (X'01"), this field contains DBCA4SWT

* When none of the previous bits are on, this field contains DBC18SWT.

This field varies based on the temporary diagnostic code given to the customer
by the VM Service organization.

Appendix C. Trace Table Codes 239

Trace Table Codes

1NOTISXdd

O0T0ONX4dd

%007

%001001 ssaIppY ssaIppy ajeoojieaq oyads
000000 00 001000000 Q3HH1O01 00 00 00 00 Y8007 1979 olpUBH 1a-b9| 9009 NMZSJOH | Wiope|d Joureluod
4007
w%wmwwuoﬂ w%m%w_w% 001007 sseippy ssaIppy a1e00])y o108ds
Q3HHLO0T 00 00 00 00 %8007 Ha-v9 olbUeH WG-v9 | 5009 MZSdOH | wiopeld Jsureiuog
INOTSX4d 0OTONX4d %001007 ssaippy ssaippy %007 1581 o0ads
00 00 00 00 00 00 00 00 a3yHLO0T 00 00 00 00 %8007 HG-+9 olpUeH Wa-¥9 | +009 MZSdOH | wiopeld Jaureiuon
INOTSX4d 00TONX4d 5001007 ssaippy ssaippy sojun oyads
00 00 00 00 00 00 00 00 a3uHLO0T 00 00 00 00 %8007 HG-+9 olpUeH ¥a-v9 | €009 MZSdOH | wiogeld Jsureiuon
INDISX4d 00TONXAd %001001 ssaIppy ssaIppY 5007 oytoads
00 00 00 00 00 00 00 00 Q3UHLOOT 00 00 00 00 ME00T Ha-v9 alpUeH g-+9 1009 MZSdOH | wiopeld Jeureluod
00 00 00 00
0 0 (A3anv HOIvA3aY (A3au)v ans A3ad uondnueiu
00 00 00 00 00 00 00 00 00 00 00 00 A30 A3aH 10SS 1dIdOH niyL ssed O/l
xiyoud e + Aupgeded
$s2IpPY MFAINA + uibuo 318V ssaippy ssaIppY uoielsuei]
SSOIPPY YEGOSY | SSelppy S.Jslied 00 00 00 00 000000 00| 1SOH INAINO HG-4Q | [eNMIA INdu HG—v9 | 020 H1HJOH sseippy
sewel} go s)sanbal awe} 1s1] 9|qe|IeA.
2< Jo} sejum [ea)s Jo | Aue Buipuelsino jo g5 g< uo sawey;
0 JqUINU :£9-Z€ SHG | JeqUINU :£9-ZE SHg PIOYSB1Y} MO| ploysaiu} UBIY | Jo JUN0d :£9-2€ Shg
sowey; go sisenbal owely | g9 z<go-ze sud| 9D 2< :£9-2¢ sug 51| o|qe|eAe
2> o} selum [eals | g9 z> Buipuelsino pIoYsaiy} Mo ploysaiyy ybiy g5 2> uo sawey; 2 ssed
J0 J9QWINU 1| §-0 SH | J0 JOqWINU :|g-0 SHE | @D 2> :1e-0Sig| @D 2> :1e-0Sig| Jownoo:lg-osig| vOOb aVdOH ueog pueweq
sawel} go mﬂmwj—uw‘_ awel} 1S1| @|qe|leAe
¢< 10} salim |eals Jo >C.m @E_UCMHwHDO 10 g9 ¢< uo sawel}
0 JquINU :£9-2€ SN | JequInu :£9-z¢ SHg ploySaIy} MO| ploysaiur YBly | 40 JUN0d :£9-2¢ Sg
sswey; go sisenbas owely | g9 z<go-ze sug| g9 2< :89-2¢ Sug 81| elqelene
¢> 10} sallum |eals a9 ¢> OC_“uCMH.wH.JO Ploysaiyl moj ploysaiyl C@_L g9 ¢> uo sawel} | ssed
JO J9QUINU :|€-0 SHA | J0 JOqWINU :LE-0 SHE| @D 2> :Le-0SHg| @D 2>:1e-0Sig| JoWNoo:lg-0sig| £00¥ QVdOH ueog puewa(
SssaIppy SOp0D JOLT YIM
al Jou3 apoD uoseay apoD uINeY | ssalppy [eay JajieD Japeay uonound | (gSAZS) eereanes ovoz (snouep) | uinjey uonoung o
00 00 00 00
DHOIAIAA HOINAIAA HOISAIAA HOIdAIAA WHVd ans A3aA uondnusyu|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ais A3A A3AA| 1000 SOAdOH O/l VX [enuip
IN SN 2N LIN
0 DdYIAIaH ILXNAZQY HOIVAIaY (A3au)V ans A3ay
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 A3Q A3aH 1050 I4IdOH | uondnusiul O/t
8¢ o€ -1 (114 8l oL 3 (xay) 135440
+ + + + +
G+N D3y p+N DaY £+N D3y Z+N D3y L+N D3y NOFH| oo J1Naom TN

40 SIN3LNOD

40 SIN3LINOD

40 SIN3LINOD

40 SIN3LNOD

40 SIN3LNOD

40 SIN3LNOD

z/NM: Diagnosis Guide

240

Trace Table Codes

JuaAg
0 0 SLVINAZ 3N3INONAZ sseIpPY sseIppY oyeo0|ieaq oyoads
00 00 00 00 00 00 00 00 SEANAZ 10-v9 olpUBH NG-49 | S209 37SdOH | wiopeld Jeureluon
JueAg
0 0 SIVINAZ 3N3INONAZ $S9IPPY $S9IPPY e1e00]1y o108ds
00 00 00 00 00 00 00 00 MEANAT HG-b9 OPUBH NG-+9 | $209 37SdOH | Wiopeld Jeureiion
1X3 1083
0 0 SLVINAZ 3N3INONAZ sseIppY sseIppY AyoN onioads
00 00 00 00 00 00 00 00 MENAZ H9-59 olpUBH NG-49 | £209 37SdOH | Wiopeld Jeureiuod
Au3 ueng
0 0 SLVINAZ 3N3INONAZ $S9IPPY $S9IPPY AyoN ap0ads
00 00 00 00 00 00 00 00 MENAT HG-b9 oPUBH NG-+9 | 2209 37SdOH | Wiopeld Jeureiion
1X3 1083
0 0 SLVINAZ 3ININONAT ssaIPpY ssaIppY 1eM onoads
00 00 00 00 00 00 00 00 MENAZ 1959 SIpUBH N9-+9 1209 37SdOH | Wiopeld Jeureiuod
Aiu3 ueng
0 0 SLVINAZ 3N3INONAZ $S9IPPY sS9IPPY 1eM onoads
00 00 00 00 00 00 00 00 MEANAT HG-b9 OPUBH NG-+9| 0209 37SdOH | Wwiopeld Jeurelion
1d TONXdd Hoe
w%%m_ww o w%o%oo - 3NINOLYT ssaIPPY ssaIppY ayeoojieaq oyoads
QIUHLLY ENIT Y ME1Y H9-v9 opUBH NG-+9| 9109 1ZSdOH | wiopeld Jsureluon
INDTISX4d D0TONX4d Hoe
NS o v 3N3NOLYT sseIPPY sS9IPPY e1e00]1y O108ds
QIHHLLYT AUVISIVT ME1Y Ha-b9 OPUBH NG-+9 | SL09 1ZSdOH | wioneld ssureluon
INDISX4d D0TONX4d 3N3NOLYT sseIppY ssoIPPY Yore 1se). oyoads
00 00 00 00 00 00 00 00 QIHHLLYT AUVISIVT ME1Y HG-b9 OPUBH NG-+9 | ¥109 1ZSdOH | wioneld Jsureluon
3
w%%m_ww% w%mmw_w% ININOLYT ssaIppY ssaIppY yorelun oyoads
QIUHLLY 2UVISIVT ME1Y H9-v9 oPUBH NG-+9 | €109 1ZSdOH | wiopeld Jsureluon
oS 2070 fiug
%V,_om_ owuom_v o Mo _m_w% 3N3NOLYT $S9IPPY sS9IPPY Yorelun oyosds
QIHHLLYT ET ME1Y Ha-v9 OPUBH NG-+9 | 2109 1ZSdOH | wioneld ssureluon
INDISX4d D0TONX4d 3N3NOLYT ssaIppY ssoIppY 1X3 yore] ogoeds
00 00 00 00 00 00 00 00 QIHHLLYT AUVISIVT YE1Y Ha-v9 olpuBH N9-+9 1109 1ZSdOH | wioneld ssureluon
INOISX4d DOTONX4d Anuz
NS oxad o%oo e 3N3NOLYT sseIpPY sseIppY yore] oyoads
QIUHLLYT 2UVISIVT a1V 1G-b9 oPUBH NG-49| 0109 1ZSdOH | wioneld ssureluon
8¢ o€ 8¢ (114 8l oL 3 (xay) 135440

+ + + + +
G+N D3y v+N D3 £+N D3Y Z+N D3H 1+N D3y Nogu[o ndom AN

40 SIN3aLNOD

40 SLN3aLNOD

40 SLN3LNOD

40 SLN3ILNOD

40 SIN3ILNOD

40 SLN3aLNOD

241

Appendix C. Trace Table Codes

Trace Table Codes

AMLNIFIS

300213IS
san
0 0 (MSdD3IS) MSd 1senH $SOIPPE MGAWA 00 00 uononsy|
00 00 00 00 ‘JAOWWAWA 00sd NNYHdOH| 10N ‘uondsoiei)
(@di— ‘LSNIAIS =) 9140131S (yoryy/z)
0 (INXIN'SA) (MSdD3IS) MSd 1s8nNHA NHVYdI3IS ‘3002131 uondsoieil|
€-0'Mg3IS 1ISenNHA 00 00 INNEM.D 00 LLV6 NYMdOH 8IS [enuIA
ssalppe ssalppe
(LHODSMANA) (NXIN'S'N) (MSdD3IS) MSd 1senNHA MAANA 3ISA MIANA 1senoy (yody/z) epolN 8IS
LHO MOPRYS | £-0"Mg3IS Isenoy 00 00 00 00 NEM.D 00 00v6 NYMJOH | [enuIA Ul Jesn uny
AMLNIFIS
0 0 (MSdD3IS) MSd 1senn ssaippe MGanNA NNH.O
00 00 00 00 JAONWAWA 00v8 NNYdOH | (Ydiy/z) Jesn uny
abeioig
ssalIppy SSaIppy ssalppy %0019 pauiniay 9914 paubiy
00000000 uiney sJo|en MEANA SJoleD | pauiniey 8mnjosqy SpIop ejgnog 00000000 0€/8 H4VdOH @njosqy uinjey
ssalppy abelols 99014
ssalppy ssalppy ssalppy Xo0|g »00|g paulniay pauiniay paubi)y |eo1607
uinley sJo|[ed MEANA SJeleD | pauiniay einjosqy [e216077 1s0H Spiop 8jqnoq 00000000 02.8 S4VdOH 1SOH uinyey
abeioig
Ssalppy ssalppy SSalppy %o0|g paisanbay o914 paubly
00000000 winley sJejed | MgAINA Joisenbey | paubissy einjosqy SpIop ejqno@ 00000000 0€98 H4VdOH 8njosqy urelqo
ssalppy abelo)g 99014
ssaippy ssalppy ssaIppy Xo0|g 3oo|g paubissy palsanbay paubi|y |eo160
MEAWA SJ8leD | MAaWA Joisenbey | paubissy einjosqy [e216077 1s0H SPIOM B|qno@ | XXX>X dl so0|g 0298 S4VdOH 1SOH urelqo
00 00 00 00
0 0 HOIvA3aY (A3au)v ans A3ad (Yoav/z)
0 00 00 00 00 00 00 00 00 A3a A3ad 1058 I4IdOH | 1dnusiul wesboid
alnLy
‘9p0od Yid
ssalppe Jaquinu weJbol
PPE H3d SSe|0 I0NUUOo|\ MSd PIO d ssalppe MaaAnNA
‘apod 9poo uondnuaiu| (yoay/z)
uondeox3 ereq ssaippy }ined ol 00€8 DHddOH | idnusju) weiboid
8poD
co_astmwc_ leulalx3y
0 0 MSd PIO [eulaix3 ‘ssaIppy NdO (yoryy/z)
._mumEm._mn_ 00 00 00 00 CO:Q:.CGE_
uondnueiu| [eussixg AX3.0 0018 1X3doH [eusex3
8¢ o€ -1 (114 8l oL 3 (xay) 135440
+ + + + +
G+N D3d #+N 534 €+N D34 Z+N D3y L+N D34 N D34 al 3ovuL T1NaON JWYN

40 SIN3LNOD

40 SIN3LINOD

40 SIN3LINOD

40 SIN3LNOD

40 SIN3LNOD

40 SIN3LNOD

z/NM: Diagnosis Guide

242

Trace Table Codes

aweli4 abeliols

0 0 SSaIppy swel |esy 0 0 0 V0.4 31ddOH 93l4 Ulelqo
$Salppy I LINHL d41ddOH awel4 abelolg
0 0 0 SSaIppY dsWel [eay adMSOINgd [eo1607 1s0H 8024 31ddOH 9al4 uiniey
(1s1] ebed paniasal
abelo)s @81} woly sabed
ssalppy Buissiw sabed jo SUE)Ilelg) ssalppy sjuajuo) ssalppy payoeg abeiois
uinley sJojed | 1unod) ANILXVSH DILIVISINGS el anjosqy DILVISSXS abed (01607 SXS 9024 dXSdOH 93l4 Uulelqo
sobed
ssalppy S4NXSvYSH SjuauoD ssalppy S TTele) ssalppy payoeg abei0}s
uiney sJejed 10 HINXSYSH HILVISINHA awel 8njosqy DIIVISSXS | obed [ealbo] SXS ¥0/4 dXSdOH 8814 uInjey
paxoojun og abelo)g yoolun
0 0 SSOIppY sWe.d [edy | OL SSeIppy [endIA $sIPPY MFAWA ssalppy SJe|ed 110D SINADOH BUIYOBIN [BNUIA
paxo0 ag abelolg 3007
0 0 SSelppy sweld [edY | O SS8IPPY [eNUIA $s2IPPY MFAWA $seIppy sJo|eD 0100 SINADOH BUIYOBIN [BNUIA
dadI3Is +ddDO
1SNIZIS i1seny Jo selkq (yoayyz)
0 574013IS (MSdO3IS) MSd 1s9nD sselppe MaaiNA N0} J8pIO-Mo-] uondsoualu]
JACWNAINA 00 00 00 00 00 00 00 00 059 AHddOH | uononisuj 1seny
8¢ oe 214 (114 8l oL 3 (xay) 135440
+ + +
G+N D34 v+N D34 €+N ©34d ¢+N D34d I+N 934 N D34 a1 3ovHL 31naow JNVYN

40 SIN3aLNOD

40 SLN3aLNOD

40 SLN3LNOD

40 SLN3ILNOD

40 SIN3ILNOD

40 SLN3aLNOD

243

Appendix C. Trace Table Codes

Trace Table Codes

244 z/VM: Diagnosis Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in all
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or setrvice.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, New York 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1991, 2005 245

246

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, New York 12601-5400
U.S.A.

Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
reliability, serviceability, or function of these programs.

z/NM: Diagnosis Guide

Trademarks

The following terms are trademarks of International Business Machines corporation

in the United States, other countries, or both:

BookMaster
DFSMS/VM

eServer

IBM

IBMLink

Language Environment
MVS

NetView
OpenExtensions
Performance Toolkit for VM
RACF

SP

System/390

VSE/ESA

VTAM

z/Architecture

z/0S

z/VM

zSeries

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

247

248 z/VM: Diagnosis Guide

Glossary

For a list of z/VM terms and their definitions, see

the [z/VM: Glossary book.

The glossary is also available through the online
HELP Facility. For example, to display the
definition of “cms”, enter:

help glossary cms

You will enter the glossary HELP file and the
definition of “cms” will be displayed as the current
line. While you are in the glossary HELP file, you
can also search for other terms.

If you are unfamiliar with the HELP Facility, you
can enter:

help

to display the main HELP menu, or enter:
help cms help

for information about the HELP command.

For more information about the HELP Facility, see
the |z/VM: CMS User’s Guide,

© Copyright IBM Corp. 1991, 2005

249

250 z/VM: Diagnosis Guide

Bibliography

This bibliography lists the books in the z/VM
product library. For abstracts of these books and
information about current editions and available
media, see|z/VM: General Informatior}

Where to Get z/VM Books

z/NVM books are available from the following
sources:

» IBM Publications Center at
[www.ibm.com/shop/publications/order/|

e 7z/VM Internet Library at
[www.ibm.com/eserver/zseries/zvm/library/

* IBM Online Library: z/VM Collection, SK2T-2067

» IBM Online Library: z/VM Collection on DVD,
SK5T-7054

z/VM Base Library

The following books describe the facilities included
in the z/VM base product.

Overview
[z/vM: General Information} GC24-6095

z/VM: Glossary} GC24-6097

[z7VM: License Information}, GC24-6102

Installation, Migration, and
Service

z/VM: Guide for Automated Installation and|
Service| GC24-6099

[z7vM: Migration Guidg, GC24-6103
[z/VM: Service Guidd, GC24-6117

[z7VM: VMSES/E Introduction and Reference,
GC24-6130

Planning and Administration
z/VM: CMS File Pool Planning, Administration,|

and Operatiogl, SC24-6074
[z/VM: CMS Planning and Administration,
SC24-6078

[z/VM: Connectivity}, SC24-6080

[z/VM: CP Planning and Administratior
SC24-6083

z/VM: Getting Started with Linux on System z9

and zSeries| SC24-6096
[z/VM: Group Control System, SC24-6098

© Copyright IBM Corp. 1991, 2005

z/VM: I/O Configuration| SC24-6100

z/VM: Running Guest Operating Systems,
SC24-6115

z/VM: Saved Segments Planning an
L Administration, SC24-6116

z/VM: TCP/IP Planning and Customization,
SC24-6125

eServer zSeries 900: Planning for the Ope
Systems Adapter-2 Featurd, GA22-7477

System z9 and eServer zSeries: Open
Systems Adapter-Express Customer’s Guide|
and Reference] SA22-7935

System z9 and eServer zSeries: Open
Systems Adapter-Express Integrated Consold
Controller User’s Guide, SA22-7990

2/0S and z/VM: Hardware Configuration
Manager User’s Guide, SC33-7989

Customization and Tuning
[z/VM: CP Exit Customization| SC24-6082
[z/VM: Performancd SC24-6109

Operation
[z/VM: System Operatior} SC24-6121
[z/VM: Virtual Machine Operatior} SC24-6128

Application Programming

[z/VM: CMS Application Development Guide)
SC24-6069
z/VM: CMS Application Development Guide forf
Assembler, SC24-6070
[z/VM: CMS Application Multitasking,
SC24-6071

[z/VM: CMS Callable Services Reference,
SC24-6072

[z/VM: CMS Macros and Functions Reference]
SC24-6075

z/\V\M: CP Programming Services, SC24-6084
z/VM: CPI Communications User’s Guide}
SC24-6085

2/\VM: Enterprise Systems]
Architecture/Extended Configuration Principled
of Operatior}, SC24-6094

z/VM: Language Environment User’s Guide,
SC24-6101

7/VM: OpenExtensions Advanced Application|
Programming Toold, SC24-6104

251

http://www.ibm.com/shop/publications/order/
http://www.ibm.com/eserver/zseries/zvm/library/

z/VM: OpenExtensions Callable Serviced

Referencg, SC24-6105

[z/VM: OpenExtensions Commands Reference,
SC24-6106

z/VM: OpenExtensions POSIX Conformance

Documen4 GC24-6107

[z/VM: OpenExtensions User’s Guide,
SC24-6108

[z/VM: Program Management Binder for CMS}
SC24-6110

z/VM: Reusable Server Kernel Programmer’s
Guide and Referencd, SC24-6112

z/VM: REXX/VM Referencd, SC24-6113
z/VVM: REXX/VM User’s Guide|, SC24-6114
z/VM: Systems Management Application|

Programmind, SC24-6122

[z/VM: TCP/IP Programmer’s Referencd,
SC24-6126

Common Programming Interface
Communications Referencd, SC26-4399
Common Programming Interface Resourced
Recovery Reference, SC31-6821

[z/0S: Language Environment Concepts Guide,
SA22-7567

z/0S: Language Environment Debugging|
Guide, GA22-7560

z/OS: Language Environment Programming
Guide} SA22-7561

2/0OS: Language Environment Programming
Reference, SA22-7562

z/OS: Language Environment Run-Timg
Messages| SA22-7566

2/0OS: Language Environment Writing ILC|
Applications, SA22-7563

2z/0S MVS Program Management: Advanced|
Facilities, SA22-7644

2z/0OS MVS Program Management: User’q
Guide and Referencd, SA22-7643

End Use

z/VV\M: CMS Commands and Ultilitied
Reference, SC24-6073

z/VM: CMS Pipelines Reference, SC24-6076

[z/VM: CMS Pipelines User’s Guide
SC24-6077

[z/VM: CMS Primer, SC24-6137
z/VM: CMS User’s Guidd, SC24-6079

z/VM: CP Commands and Ultilities Reference)
SC24-6081

252 z/VM: Diagnosis Guide

[z/VM: Quick Referencd, SC24-6111
lz/VM: TCP/IP User’s Guidd, SC24-6127
z/VM: XEDIT Commands and Macrog

Referencgl, SC24-6131

z/VM: XEDIT User’s Guide, SC24-6132

CMS/TSO Pipelines Author’s Edition]
SL26-0018

System Diagnosis

z/VM: CMS and REXX/VM Messages an
Codes) GC24-6118

z/VM: CP Messages and Codes, GC24-6119
z/VVM: Diagnosis Guidd, GC24-6092

z/VM: Dump Viewing Facility, GC24-6093
Z/VM: Other Components Messages and
Codes| GC24-6120

[z/VM: TCP/IP Diagnosis Guidd, GC24-6123

[z/VM: TCP/IP Messages and Codes,
GC24-6124

[z/VM: VM Dump Tool, GC24-6129

2/0S and z/VM: Hardware Configuration
Definition Messaged, SC33-7986

Books for z/VM Optional Features

The following books describe the optional features
of z/VM.

Data Facility Storage
Management Subsystem for VM
[z/VM: DFSMS/VM Customization, SC24-6086

[z/VM: DFSMS/VM Diagnosis Guidé,
GC24-6087

[z/VM: DFSMS/VM Messages and Codes,
GC24-6088

[z/VM: DFSMS/VM Planning Guidg, SC24-6089

[z/VM: DFSMS/VM Removable Media Services,
SC24-6090

[z/VM: DFSMS/VM Storage Administration,
SC24-6091

Directory Maintenance Facility

z/VM: Directory Maintenance Facilitﬂ
Commands Reference, SC24-6133

z/\VVM: Directory Maintenance Facilit
Messages, GC24-6134

z/VM: Directory Maintenance Facility Tailoring|
and Administration Guide] SC24-6135

Performance Toolkit for VM™
[z/VM: Performance Toolkil, SC24-6136

Resource Access Control Facility
External Security Interface (RACROUTE,
Macro Reference for MVS and Vi

GC28-1366

Resource Access Control Facility: Auditor’s|
Guide} SC28-1342

Resource Access Control Facility: Comman
Language Reference, SC28-0733

Resource Access Control Facility: Diagnosis|
Guidg, GY28-1016

Resource Access Control Facility: Genera
Informatior], GC28-0722

Resource Access Control Facility: General
User’s Guidgl, SC28-1341

Resource Access Control Facility: Macros and|

lnterfaceg[, SC28-1345

Resource Access Control Facility: Messages|

and Codegi, SC38-1014

Resource Access Control Facility: Migration
and Plannind, GC23-3054

Resource Access Control Facility: Security|
Administrator’s Guidd, SC28-1340

Resource Access Control Facility: Systen]
Programmer’s Guidd, SC28-1343

Bibliography 253

254 z/VM: Diagnosis Guide

Index
A

ABEND macro 73
abnormal dump
See abnormal end (abend), dump
abnormal end (abend)
AVS 193
CF 67
checklist for reporting
CMS 195
CP 195
GCS 195
RSCS 195
CMS 73
code
106, reason code 030B 150
778 163
804 162
80A 162
878 162
CP, reason for 15
CRR server 95
dump 131
description of type 55
dumping to DASD 55
dumping to tape 55
reading 55
specifying output device 55
GCS 135
hard 15
overview 2
problem types 3
processing, GCS 135
program check, processing 137
reason for, CP 15
SFS server 95
soft 15
TSAF 181
types of 14
virtual machine 16
work area 136
abnormal termination
See abnormal end (abend)
AbnormalEnd APl 74
active disk table (ADT) 76
active file table (AFT) 76
active task 145
ADDMAP command 183, 190

address range, restricting tracing to 31

ADT (active disk table) 76
AEB block 142

SIEAEQ 143

VMCSCHDX 143
AFT (active file table) 76
AGW SET ETRACE command 191
AGW SET ITRACE command 191
alter contents of storage 80
altering storage contents 34

© Copyright IBM Corp. 1991, 2005

analyzing data 4
anchor blocks, storage 154

APPC/VM synchronous event (type X'0C’) entry

APPC/VM VTAM Support

See AVS (APPC/VM VTAM Support)

appending the map 183, 190
applications, debugging 151
Assert Facility 56

audience of this book xi

automatic generation of CMS abend dumps 78

AVS (APPC/VM VTAM Support)

B

abnormal end 16, 193
AGW SET ETRACE command 191
AGW SET ITRACE command 191
creating dumps 189
debugging 189
diagnosing dumps 190
displaying dump information 190
dumps
creating 189
diagnosing 190
displaying information 190
processing 190

formatting and displaying trace records

processing dumps 190
setting external tracing 191
setting internal tracing 191

using system trace data to diagnose problems

BEGIN command 16, 128

BL

DL macro 147

BLOCKDEF utility command 129
boundary box usage 176
branch entry

FREEMAIN (type X'0B’) entry 118
GETMAIN (type X'0A’) entry 117

byte alignment on terminal output 26,

C

27

calling IBM for assistance, data needed 9
CCW mapping 173
CF (Coupled Facilities) service machine

debugging 67
determining status 67
diagnosing problems 68
processing a dump 68

checking free storage 156
checklist

for performance problem
hardware failure 197
inadequate system parameters
infinite loop in a virtual machine
infinite loop in CP 197
infinite loop in RSCS 197

197
197

191

119

191

255

checklist (continued)
for specific problem
CMS abend 195
CP abend 195
CP wait state 196
GCS abend 195
incorrect or unexpected output 197
RSCS abend 195
RSCS wait state 196
virtual machine wait state 196
clock comparator 21
CMDBUF 173
CMNDLINE (command line) 75
CMS (Conversational Monitor System)
abnormal abend processing 73
checklist for reporting abends 195
dump file printing 80
dump generation, automatic 78
dump reading, abends 79
pipelines
debugging 85
incorrect output 91
operation exception 89
pipeline stall 92
PIPMOD 85
program exception 85
protection exception 87
TRACE option 92
using temporary stages to debug 91
reading abend dumps 79
CMSCB (OS control blocks) 75
collecting TSAF error information 181
command
ETRACE
AVS 191
SFS 101
TSAF 185
INDICATE 37
ITRACE (for SFS) 101
LOCATE 37, 61, 62
MONITOR 37
QUERY SRM 37
QUERY TRACEFRAMES 39
SET DUMP 56
SET ETRACE (for TSAF) 185
SET ITRACE (for AVS) 191
SET TRACEFRAMES 8, 39
summary for debugging 23
support 170
to collect and analyze system information 37
tracing 41
command and console Support 170
common dump receiver 128
common lock, GCS 140
common storage
anchor blocks (CSAB) 154
management 162
preserving contents while dump finishes 132
Communication Task Queues
CMDBUF 172
Operator Reply Elements (ORE) 172

256 z/VM: Diagnosis Guide

Communication Task Queues (continued)
ORE 172
WQE 172
Write Queue Elements (WQE) 172
configuration file for GCS 103, 128
console log
definition of 7
sample, SFS 96
sample, TSAF 182
control block
description 57
HCPCPEBK 63
HCPFRMTE 64
HCPIORBK 62
HCPPFXPG 58
HCPRDEV 60
HCPSAVBK 63
HCPSVGBK 63
HCPSYSCM 58
HCPVDEV 63
HCPVMDBK 59
Control Program
See CP (Control Program)
controlling display of messages 69
controlling trace information 30
Conversational Monitor System
See CMS (Conversational Monitor System)
coupling facility, debugging 67
CP (Control Program)
abnormal end 14
checklist for
reporting abends 195
wait state 196
disabled wait 19
enabled wait 20
execution block 63
trace table
locating 39
CP SET DUMP command 55
create
AVS dump 189
dump 49
GCS module map 129
TSAF dump 183
TSAF map 183
CRR server abnormal end 15
CSAB - common storage anchor blocks 154
CVT (Communications Vector Table) 175
CVTSECT (CMS Communications Vector Table) 76

D

Dasd Dump Restore

See DDR (Dasd Dump Restore)
data compression services, GCS 174
data needed before calling IBM for assistance 9
data sheet, problem inquiry 10
DDR (Dasd Dump Restore) 17
debug

abnormal end

AVS 193

debug (continued)

CF 67

CMS 73

CP 14

CRR 95

GCS 135

SFS 95

TSAF 181

virtual machine 16

AVS

abnormal end 193

creating dumps 189

diagnosing dumps 190

displaying dump information 190

dumps 189

formatting and displaying trace records 191

processing dumps 190

setting external tracing 191

setting internal tracing 191

using system trace data to diagnose
problems 191

CF service machine, debugging 67
CMS

abend processing 73

abend, finding reason for 73

abend, types of 73

collection information 74

commands, debugging 69

dumps, creating to debug 78

dumps, creating when specific message is
received 79

module load map 72

nucleus load map 72

printing dump file 80

tips 77

tracing 71

useful information 74

using CMS to debug 77

CMS pipelines

calculating displacements 85
incorrect output 91

operation exception 89

pipeline stall 92

program exception 85

protection exception 87

recreating a program exception 86
TRACE option 92

using temporary stages 91

commands summary 23
CcpP

abend dump 55

control blocks, looking at 57
debugging in a virtual machine 55
reading abend dump 55

data compression errors 178

data needed before calling IBM 9
determining the cause of a problem 9
GCS

ABEND DUMP macro 131
abnormal end 135
common storage management problem 162

debug (continued)

GCS (continued)
common storage, preserving 131
control blocks 137
Dump Viewing Facility to process dumps
dumping facilities 128
dumps, creating 130
external trace records 125
external tracing facilities 121
GDUMP command 130
GTRACE macro 104
/10 164
interactive debugging support 128
internal tracing facilites 103
ITRACE command 104
load error 150
preserving common storage 131
program check 137
program, where loaded 149
SDUMP macro 131
SDUMPX macro 131
SYSTEM RESTART command 131
trace facility 132
TRACERED utility 124
TRSAVE command 124
TRSOURCE command 122
VMDUMP command 131

how to start 1

/0 169

identify the problem 3

interactive 25

introduction 1

loop 17

pipelines, CMS
calculating displacements 85
incorrect output 91
operation exception 89
pipeline stall 92
program exception 85
protection exception 87
recreating a program exception 86
TRACE option 92
using temporary stages 91

problem types 9

servers
abnormal end 95
collecting error information 95
creating file pool server dump 99
CRR 95
diagnosing a server dump 100
formatting trace records 100
printing a server dump 101
processing a server dump 100
sample console log 96
setting external tracing 101
setting internal tracing 101
SFS 95
using console log 96
using server dumps to diagnose 99

TSAF
abnormal end 181

Index

137

257

debug (continued)
collecting error information 181
creating TSAF dump 183
displaying trace records 184
displaying TSAF dump information 184
formatting trace records 184
printing TSAF dump 184
processing TSAF dump 183
sample console log 182
setting external tracing 185
trace table entry format 186
trace table trailer record format 186
TSAF QUERY command 187
using the console log 182
using TSAF dumps to diagnose 182
unexpected result 16
wait
CP disabled wait 19
CP enabled wait 20
virtual machine disabled wait 20
virtual machine enabled wait 21
with z/VM facilities 13
defining separate printer for trace data 28, 31
DELETE macro 147
device characteristics 169

diagnosing
AVS dump 190
CF dump 68

TSAF dump 184
diagnosis with key control blocks 57
dispatch queue 144
dispatcher (type X’01’) entry 107
display
AVS dump information 190
AVS trace records 191
real machine data 25
TSAF dump information 184
virtual machine data 25
DISPLAY command 25, 69, 128
DMSABE (abend routine) 75
DMSABN macro 74
DMSITP 77
DMSITP routine 73
does a problem exist? 2
dump
abnormal end dump 131
analyzing 129
AVS
creating 189
diagnosing 190
displaying information 190
processing 190
CF 68
communication controller storage 49
CP 49
CP restart
obtaining copy of 50
when to use 17, 20, 22
creating 49
definition 5
formatting trace entries 57

258 z/VM: Diagnosis Guide

dump (continued)
GCS 130
GDUMP 130
generation, automatic 78
information included in 49
locating
control block information 57
module and entry point addresses 57
RDEVs and VDEVs 57
printing information 57
problems helped by 50
PSW values, viewing 57
reading 56
real machine data 51
register contents, viewing 57
SDUMP 131
SDUMPX 131
setting up the system for 50
single virtual machine 49
snapdump 49
stand-alone 49

to DASD 55
to tape 55
TSAF

creating 183
diagnosing 184
printing 184
processing 183
types of 49
used in problem determination 15
virtual machine data 51
VMDUMP 131
DUMP command 18, 25, 27, 51, 69, 128
DUMP command to print virtual storage 27

DUMP operand of SYSTEM_USERIDS statement in

system configuration file 56, 100, 183
Dump Viewing Facility
displaying dump information 57
DUMPSCAN command 80
features for GCS dumps 129
obtaining a GCS map 189
processing GCS dumps 137
PRTDUMP command 80
TSAF trace entries 186
DUMPSCAN command 129

E

ECRLOG (extended control registers) field 75
ETRACE 8, 135
ETRACE command 121
AVS 191
SFS 101
TSAF 185
ETRACE GROUP 121
external interrupt (type X'02’) entry 108

External Interrupt Handler Work Area (EXTWA) 211

external trace

buffer
format of 122
locating 122

external trace (continued)
facilities, GCS 121
record, formatting and displaying 125
servers 101
EXTOPSW (external old PSW) 74
EXTSECT (external interrupt work area) 75

EXTWA - External Interrupt Handler Work Area 211

F

FCBTAB (file control block table) 75
fetch-protected storage 128
filtering 42
finding evidence of a problem 4
formatting AVS trace records 191
FPRLOG (floating-point registers) field 75
fragmentation, storage 156
frame table control block 64
free storage 156
FREEMAIN

goes into an infinite loop 162

via SVC (type X'09’) entry 116

G

GCS (Group Control System)
abnormal end 15, 135
checklist for reporting abends 195
common Lock 140
configuration file 103, 128
control blocks 199
data compression 174
debug 103
debug, dumping facilities
common dump receiver 128
rules of authorization 128
debug, external tracing facilities
displaying external trace records 125
ETRACE command 121
ETRACE GROUP 121
external trace table formatted entries,
examples 126
formatting external trace records 125
TRSOURCE command 121
debug, interactive debug support
analyzing dumps 129
CP Commands 128
dumping VSAM information 129
debug, internal tracing facilities
GTRACE macro 104
internal trace table format 104
ITRACE command 104
dump processing 137
external trace table formatting entries, examples
entry type X'03° 126
entry type X'05° 127
entry type X’'08 127
entry type X'09° 127
entry type X’0A’ 127
entry type X'0B* 127
entry type X'0E’ 127

GCS (Group Control System) (continued)
internal trace table format
data 106
header 104

internal trace table format, trace header entries

APPC/VM synchronous event (type X’0C’)
branch entry FREEMAIN (type X’0B’) 118
branch entry GETMAIN (type X’0A’) 117
dispatcher (type X’01’) 107

external interrupt (type X'02’) 108
FREEMAIN via SVC (type X'09°) 116
GETMAIN via SVC (type X'08) 115
GTRACE (type X'0E’) 120

I/O interrupt (type X’03’) 110

IUCV signal system service (type X'07’) 114

program interrupt (type X'04’) 111
SIO (type X'06’) 113
SVC interrupt (type X'05") 112
load error 150
locating 132
nucleus constant area 199
obtaining a GCS map 189
service point trace entries 120
trace 132
trace table 140
virtual machine that created dump 132
GCTYTD control program 126
GDUMP 130
general 1/0
options
CHAR 164
CLOSE 164
HALT 164
MODIFY 164
OPEN 164
START 164
STARTR 164
table 166
generating CMS abend dumps automatically 78
GENMOD command 73
GETMAIN
goes into an infinite loop 162
via SVC (type X'08’) entry 115
getting information AVS trace entries 193
GIOTB 166
glossary information 249
GPRLOG (general purpose registers) field 75
Group Control System
See GCS (Group Control System)
GSB (Gotten Storage Blocks) 157
GSBB (block of gotten storage blocks) 157
GSBB, system-wide description of 161
GTF header 126
GTRACE 135
GTRACE (type X'0E’) entry 120
GTRACE macro 104
guest operating system problem 1

H

halt execution (HX) in CMS 74

Index

104

119

259

hang introduction to debugging 1

condition 2, 4, 21 IOSAVE 165
system 22 IOSECT (I/O interrupt work area) 76
user 22 ITRACE 8, 132
hard abnormal end 15 ITRACE command
hardware AVS 191
checklist for reporting failure 197 GCS 104
failure 2 SFS 101
HCPCPEBK control block 63 IUCV (Inter-User Communications Vehicle) 150
HCPFRMTE control block 64 anchor block 151
HCPIORBK control block 62 debugging applications 151
HCPPFXPG control block 58 path ID block 152
HCPRDEYV control block 60 signal system service (type X’07’) entry 114
HCPSYSCM control block 58 tracing [IUCV 151
HCPVDEV control block 63 user ID block 152

HCPVMDBK control block 59
how to find the machine ID 140

how to start debugging 1 K
key
control blocks 57
I page 157

I/0O (Input/Qutput)
debugging 169

interrupt L
(type X’03’) entry 110 LASTCMND field 75
handling 167 LASTEXEC field 75
request and response block 62 LINK block 142
IDENTIFY macro 147 LINK macro 146
identifying the problem 3 load
incorrect results error, GCS 150
checklist for reporting 197 list, virtual machine 148
description 2 map
hardware failure 197 definition of 5
inadequate system parameters 197 generation 73
infinite loop in a virtual machine 197 information contained in 5
infinite loop in CP 197 obtaininga 5
infinite loop in RSCS 197 maps 70
INDICATE command 37 LOAD command 73
infinite loop LOAD macro 146
checklist for reporting in a virtual machine 197 LOADCMD command 171
checklist for reporting in CP 197 LOCATE command 37, 61, 62
checklist for reporting in RSCS 197 locating CP control blocks in storage 37
definition 2 locking function 132
information sources that describe z/VM’s condition 4 loop
Input/Output (I/O) condition in virtual machine 2,7
See /0O (Input/Output) CP disabled loop 17
Inter-User Communications Vehicle debugging 17
See IUCV (Inter-User Communications Vehicle) infinite
internal trace table checklist for reporting in a virtual machine 197
GCS checklist for reporting in CP 197
locating 132 checklist for reporting in RSCS 197
locating in common storage 133 description 2
locating in private storage 133 problem type 3
locating last trace entry 134 program 37
TSAF 186 virtual machine disabled loop 18
internal tracing virtual machine enabled loop 18
facilities, GCS 103 LOWSAVE (debug save area) 74
server virtual machines 101
interrupt

control blocks 168
handling, I/O 167

260 z/VM: Diagnosis Guide

M

machine check 16
machine ID 140
macro
BLDL 147
DELETE 147
GTRACE 104
IDENTIFY 147
LINK 146
LOAD 146
SYNCH 147
XCTL 146
macroinstruction
See macro
major SACBs fields 155
MAP option of GENMOD command 73
MAP option of LOAD command 73
MCKOPSW (CMS machine check old PSW) 74
messages
controlling display of 69
description and use 4
minor SACBs fields 155
MODMAP command 73
module load map 72
MONITOR command 37

N

nucleus
load map
debugging CMS 72
definition of 5
information contained in 5
obtaininga 5
NUCON
changes 175
CMS nucleus constant area 74
extension 203
GCS nucleus constant area 199
information 171
mapping 199

(o)

obtaining a GCS load map 189
ORE 173

P

page key 157
path
ID block 152
information 153
performance, slow 2
PGLOCK 168
PGMOPSW (program old PSW) 74

PGMSECT (program check interrupt work area) 76

PGMWA - Program Interrupt Work Area 212
pipeline
CMS 85

pipeline (continued)
debugging 85
incorrect output 91
operation exception 89
pipeline stall 92
PIPMOD 85
program exception 85
protection exception 87
TRACE option 92
using temporary stages to debug 91
PIPMOD 85
preface xi
prefix page 58
prerequisite knowledge xi
PREVCMND field 75
PREVEXEC field 75
printer output 27
printing
CMS dump file 80
TSAF dump 184
VM Dump Tool, using 57
with the VM Dump Tool 57
private storage anchor blocks (PSAB) 154
problem
identifying 3
inquiry data sheet 10
recreating 170
type
hang condition 4
loop 3
performance 4
unexpected results 3
wait 3
processing a dump
AVS 190
GCS 137
TSAF 183
program
check 137
check debugging 38
exception, CMS 73
exception, CMS pipelines 85
interrupt (type X’'04’) entry 111
load 149
loops 37
management 146
temporary fix (PTF), applying 1
Program Interrupt Work Area (PGMWA) 212
Program Status Word
See PWS (Program Status Word)
PRTDUMP command 80
PSAB - private storage anchor blocks 154
PTF (program temporary fix), applying 1
purpose of this book xi
PWS (Program Status Word)
definition of 6
key 14 128
value, viewing 57

Index

261

Q

QUERY AUTODUMP command 69, 78
QUERY command 29

QUERY SRM command 37

query system feature, condition, or event 28
QUERY TRACEFRAMES command 39
QUERY TRFILES command 125

R

RDEV, how to locate 60
reading
CMS abend dump 79
CP abend dumps 55
dump 56
real device control block 60
reason code 030B 150
recreating the problem 170
register
access 6
contents, viewing 57
control 6
definition 6
floating point 6
general purpose 6
use 6,76
Remote Spooling Communications Subsystem
Networking

See RSCS (Remote Spooling Communications

Subsystem Networking)
repetitive output 2
restart, system 131
return code 4

RSCS (Remote Spooling Communications Subsystem

Networking)
checklist for reporting abend 195
checklist for wait state 196
running task 145

S

SACB
major SACBs 155
minor SACBs 155
scanning 156
save area block 63
saving trace tables 46

SDUMP 131
SDUMPX 131
server

abnormal end 15
console log 96
dump
creating 99
diagnosing 100
printing 101
processing 100
use to diagnose 99
Service Point (SP) trace entries 120
SET AUTODUMP command 69, 78

262 z/VM: Diagnosis Guide

SET DUMP command 56
SET ETRACE command
AVS 191
TSAF 185
SET ITRACE command
AVS 191
SET TRACEFRAMES command 8, 39
setting
external tracing
AVS 191
TSAF 185
internal tracing, AVS 191
setting system feature, condition, or event
SFS (Shared File System)
debugging
abnormal end 95
collecting error information 95
creating file pool server dump 99
diagnosing a server dump 100
displaying trace records 100
printing a server dump 101
processing a server dump 100
sample console log 96
setting external tracing 101
setting internal tracing 101
using console log 96
using server dumps to diagnose 99
ETRACE command 101
ITRACE command 101
SFS server abnormal end 15
Shared File System
See SFS (Shared File System)
SID 166
SIDTABLE 166
SIE - NUCON Extension 203
SIE extension mapping 203
SIE information 172
SIO (type X'06’) entry 113
slow performance 2
SNAPDUMP Command 51
soft abnormal end 15
spool command 96
SPOOL command 182
stall of CMS Pipelines 92
stand-alone dump utility 52
state block (STBLK) 141
AEB block 142
LINK block 142
mapping 207
SVC block 142
task waiting 142
wait count 142
STBLK - state block 141
STDEBUG command 69
storage
alteration, tracing 33
anchor blocks

common storage anchor blocks 154

mapping 210
private storage anchor blocks 154

28

storage (continued)
contents alteration
STORE (Guest Storage) command 80
STORE (Host Storage) command 80
ZAP command 80
ZAPTEXT command 80
contents, altering
host storage 35
virtual machine storage 34
fragmentation 156
management
common 162
GCS component 162
mapping 209
problems 162
tracing 163
system-wide description of 161
task block 161
STORAGE statement in system configuration file 8, 39
STORE (Guest Storage) command 34, 80
STORE (Host Storage) command 35, 80
STORE command 69, 128
STORE STATUS command 35, 36
STORMAP command 70
subchannel ID table 166
SUBPMAP command 70
subpools, task block 161
summary of
changes xiii
steps to follow when a TSAF abend occurs 181
steps to follow when an AVS abend occurs 193
z/VM debugging commands 23
SVC block 142
SVC interrupt (type X'05’) entry 112
SVC Interrupt Handler Work Area (SVCWA) 211
SVC save area (SVCSAVE) 77
SVCOPSW (SVC old PSW) 74
SVCSAVE (SVC save area) 77
SVCSECT (SVC interrupt work area) 76
SVCTRACE command 69, 70
SVCWA - SVC Interrupt Handler Work Area 211
symptom record
definition 9
displaying 57
duplicate, locating 57
for AVS 190
symptoms of problems
message
compared with return code 4
message identifier 4
message text 4
parts of 4
return code compared with message 4
SYNCH macro 147
system
abnormal end 74
common area 58
hangs 22
information, collect and analyze
INDICATE command 37
LOCATE command 37

system (continued)
information, collect and analyze (continued)
MONITOR command 37
parameters checklist for problem reporting 197
restart 131
trace data to diagnose TSAF problems 185
SYSTEM command 29
system configuration file
STORAGE statement 8, 39
SYSTEM_USERIDS statement, DUMP operand 56,
100, 183
SYSTEM_USERIDS statement in system configuration
file 56, 100, 183
system-wide description of storage 161
system-wide description of TSHBs and GSBBs 161

T

task
active 145
block (TBK) 140
block mapping 205
block storage 161
block subpools 161
control blocks 157
ID table (TIDTB) 145
load list 147
running 145
storage header block (TSHB) 157, 161
storage headers (TSHs) 157
waiting 142
TBK - task block 140, 205
terminal output 26
TEVC (trace entry verification code) 105
TIDTB (task ID table) 145
trace
capabilities in EXECs 71
CMS Pipelines 92
code paths 43
command 8
definition of 8
entry
AVS 191
capturing 41
contents 40
filtering 41
format 40
limiting 41
TSAF 184, 186
wrapping 41
entry verification code (TEVC) 105
ETRACE 8, 135
events in virtual machine with TRACE command 29
external, AVS 191
external, TSAF 185
GCS 132
GTRACE 135
I/O devices 43
information, controlling 30
internal, AVS 191
ITRACE 8, 132

Index 263

trace (continued)
IUCV 151
program management 146
real /0 41
restricting to address range 31
run a CP command 33
selectivity 32
SNA tracing tools 9
stopping 34
storage alteration 33
storage management 163
successful events 32
table
CP, locating 39
entries 170
GCS 140
saving 46
using 134
viewing 47
table entries
AVS 191
CP 40, 213
GCS 104, 170
TSAF 184, 186
task management 146
TRACE 8
TRSAVE 8
TRSOURCE 8
using 39
virtual machines 43
TRACE command 16, 18, 29, 69
TRACE option of CMS Pipelines 92
TRACERED utility 124, 126
tracing 8
Transparent Services Access Facility

See TSAF (Transparent Services Access Facility)

trap use with AVS 191
TRSAVE command 124
TRSOURCE command 43, 121, 126, 185, 192
TSAF (Transparent Services Access Facility)
abnormal end 16, 181
collecting error information 181
creating TSAF dump 183
debugging 181
displaying trace records 184
displaying TSAF dump information 184
dumps
creating 183
diagnosing 184
printing 184
processing 183
use to diagnose 182
formatting trace records 184
internal trace table
entry format 186
trailer record format 186
printing TSAF dump 184
processing TSAF dump 183
QUERY command 187
sample console log 182
SET ETRACE command 185

264 z/VM: Diagnosis Guide

TSAF (Transparent Services Access Facility)
(continued)
setting external tracing 185
trace table entry format 186
trace table trailer record format 186
using dumps to diagnose 182
using the console log 182
TSAF QUERY command 187
TSAFDVF MAP 183
TSH (Task Storage Headers) 157
TSHB (Task Storage Header Blocks) 157

U

unexpected result
checklist for reporting 197
description 2
determining the cause 3
hardware failure 197
inadequate system parameters 197
infinite loop in a virtual machine 197
infinite loop in CP 197
infinite loop in RSCS 197
type of error 16

user hangs 22

user ID
block 152
trace entry 140
using

console log 182
system trace data to diagnose
AVS problems 191
TSAF problems 185
traces 39
TSAF dumps to diagnose problems 182
using this book
audience xi
prerequisite knowledge xi

\'

VAD 176
viewing
AVS trace entries
using DUMPSCAN 192
using the Dump Viewing Facility 192
using TRACERED 192
trace tables 47
TSAF trace entries
using DUMPSCAN 186
using the Dump Viewing Facility 186
using TRACERED 186
virtual device control block 63
virtual machine
abnormal end 16
checklist for wait state 196
data, displaying or dumping
byte alignment on terminal output 27
DISPLAY command 25
DUMP command 25
printer output 27

virtual machine (continued) X
data, displaying or dumping (continued)
terminal output 26
VMDUMP command 51
descriptor block 59
disabled wait 20
enabled wait 21 z
load list 148
that created GCS dump 132 ZAP command 80
virtual machine control block (VMCB) 139 ZAPTEXT command 80
Virtual Machine Control Block (VMCB) 212
VM Dump Tool
CP dumps 55
printing dump information 57
reading a dump 56
VMCB - virtual machine control block 139
VMCB - Virtual Machine Control Block 212
VMDUMP command 18, 51, 69, 74, 131
basic examples 28
example for CMS 52
example for SFS 99
example for TSAF 183
VMDUMP records
format 65
VMDUMPTL command
debugging save areas 63
displaying symptom record information 57
displaying the RDEV 60
formatting CP control blocks 57
formatting trace entries 57
locating descriptor blocks 59
VSAM
anchor block 176
debugging 177
dumping information 129
work areas 177
VSCS printing formatted control blocks 129
VSCS, I/O trace 169
VTAM
I/O trace 169
printing formatted control blocks 129
work areas 177

XA virtual machine 103
XC virtual machine 103
XCTL macro 146

W

wait
count 142
problem type 3
wait state
checklist for CP 196
checklist for RSCS 196
checklist for virtual machine 196
in virtual machine 2, 6
work area
VSAM 177
VTAM 177
WQE 173

Index

265

266 z/VM: Diagnosis Guide

Readers’ Comments — We’d Like to Hear from You

z/VM

Diagnosis Guide

version 5 release 2
Publication No. GC24-6092-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral
Overall satisfaction]]]

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral
Accurate O O L]
Complete O O L]
Easy to find O O L]
Easy to understand O O Ul
Well organized O O]
Applicable to your tasks] |]

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? [] Yes [] No

Dissatisfied

O

Dissatisfied

oogooo

Very Dissatisfied
O

Very Dissatisfied

Oogooo

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You

GC24-6092-01

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

Fold and Tape

GC24-6092-01

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384
2455 South Road

Poughkeepsie, New York 12601-5400

Please do not staple

Fold and Tape

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

-

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Program Number: 5741-A05

Printed in USA

GC24-6092-01

opIn<) sisouger(| INA/Z

G 9SEI[ad G UOISIoA

:UOLJeWJO UL duLdg

	Contents
	About This Book
	Who Should Read This Book
	What You Should Know before Reading This Book
	Where to Find More Information
	How to Send Your Comments to IBM

	Summary of Changes
	GC24-6092-01, z/VM Version 5 Release 2
	64-bit Exploitation
	Support for 64-Bit Dump
	Support for Vector Facility Removed
	Guest LAN Sniffing support

	GC24-6092-00, z/VM Version 5 Release 1
	SCSI FCP Disk Support
	Removal of CP Functions

	Chapter 1. Introduction to Debugging
	How to Start Debugging
	Does a Problem Exist?
	Abnormal End
	Unexpected or Incorrect Result
	Infinite Loop
	Wait State
	Hang Condition
	Slow Performance

	Identifying the Problem
	Return Codes
	Messages

	Analyzing the Available Data
	Dump
	Nucleus Load Map
	Registers
	Program Status Word
	Console Log
	Traces
	Symptom Records

	Determining the Cause
	Data You Need Before Calling IBM for Assistance
	Problem Inquiry Data Sheet

	How to Use z/VM Facilities to Debug
	Abends
	CP Abend
	Hard Abend
	Soft Abend
	Reasons for the CP Abend

	CF Service Machine Abend
	CMS Abend
	SFS or CRR Server Abend
	GCS Abend
	TSAF Abend
	AVS Abend
	Virtual Machine Abend (Other than CMS)

	Unexpected Results
	Loops
	CP Disabled Loop
	Virtual Machine Disabled Loop
	Virtual Machine Enabled Loop

	Wait States
	CP Disabled Wait
	CP Enabled Wait
	Virtual Machine Disabled Wait
	An Example of a Virtual Machine Disabled Wait

	Virtual Machine Enabled Wait

	Hang Conditions
	System Hangs
	User Hangs

	Use of z/VM Debugging Commands

	Chapter 2. Debugging Interactively
	Commands That Display and Dump Machine Data
	Terminal Output
	Printer Output

	Commands That Set and Query System Features, Conditions, and Events
	Commands That Monitor Events
	Controlling the Trace Information
	Restricting the Trace to an Address Range
	Selectivity
	Tracing Successful Events
	Tracing Storage Alteration
	The TRACE CMD Option
	Stopping the TRACE

	Commands That Alter the Contents of Storage
	Altering Contents of Virtual Machine Storage (STORE Guest Command)
	Altering Contents of Host Storage (STORE Host Command)
	Simulating the Hardware Store Status Facility (STORE STATUS)

	Commands to Collect and Analyze System Information
	What to Do If Your Program Loops
	Debugging with CP after a Program Check

	Chapter 3. Using Traces to Debug
	Locating the CP Trace Table
	Trace Entries
	Limiting the Trace Entries Recorded
	Designating Entries to Be Captured or Filtered
	More Information on Filtering

	Tracing I/O, Data Code Paths, and Virtual Machines
	I/O Trace Example
	Trace Table Example
	The problem
	The research
	The solution

	Data Trace Example 1
	Step A
	Step B
	Step C
	Step D

	Data Trace Example 2
	Step A
	Step B
	Step C

	Saving Trace Data on Tape or DASD
	Factors That Affect Saving Trace Data

	Viewing the Trace Tables
	Factors affecting TRACE Table Pages

	Chapter 4. Creating a Dump
	Types of Dumps
	Setting Up the System for a Dump
	Dumping Real or Virtual Machine Data
	Commands That Dump Real or Virtual Machine Data
	The DUMP Command
	The SNAPDUMP Command
	The VMDUMP Command

	Stand-alone Dump Utility

	Chapter 5. Debugging CP
	Debugging CP in a Virtual Machine
	Abend Dumps
	Reading CP Abend Dumps
	Using the Assert Facility
	Reading the Dump with the VM Dump Tool
	Printing Dump Information from the VM Dump Tool

	Looking at Key Control Blocks
	HCPPFXPG: The Prefix Page
	HCPSYSCM: The System Common Area
	HCPVMDBK: The Virtual Machine Descriptor Block
	Locating Descriptor Blocks from a Dump

	HCPRDEV: The Real Device Control Block
	Using a Radix Tree Structure to Locate RDEVs

	HCPIORBK: The I/O Request and Response Block
	HCPVDEV: The Virtual Device Block
	HCPCPEBK: The CP Execution Block
	HCPSAVBK and HCPSVGBK: The Save Area Block
	HCPFRMTE: The Frame Table Entry
	VMDUMP Records: Format and Content

	Chapter 6. Debugging CF Service Machine Problems
	Determining the Status of the CF Service Machine
	Steps to Follow When CF Service Machine Abend Occurs

	Finding the CF Service Machine Dump
	Processing a CF Service Machine Dump

	Diagnosing Problems for CF Service Machines

	Chapter 7. Debugging CMS
	Debugging Commands
	Using the SVCTRACE command

	Tracing Capabilities in EXECs
	Nucleus Load Map
	Module Load Map
	CMS Abend Processing
	Finding the Reason for the CMS Abend
	Types of CMS Abends
	Collecting Information
	Register Use
	Some Debugging Tips

	Using CMS to Debug

	Setting Machines to Automatically Create Dumps
	Generating CMS Abend Dumps
	Reading CMS Abend Dumps
	Looking at Dump Errors

	Creating Dumps in Case of Messages
	Printing a CMS Dump File

	Commands That Alter the Contents of Storage
	Diagnosing SFS Related Application Errors
	Diagnosing CMS File System Errors
	Diagnosing Data Compression Services System Errors
	When Calling IBM Software Support
	Diagnosis Tools Available

	Chapter 8. Debugging CMS Pipelines
	Debugging a Program Exception in CMS Pipelines
	Calculating the Displacements of the Failing Module
	Recreating the Problem
	Examples
	Example of a Protection Exception in CMS Pipelines
	Example of an Operation Exception in PIPMOD

	Debugging Incorrect Output From CMS Pipelines
	Adding Temporary Stages to Write Out the Data
	Example

	Using the CMS Pipelines TRACE Option

	Debugging a CMS Pipelines Stall
	Example

	Chapter 9. Debugging the SFS Server or CRR Recovery Server
	Summary of Steps to Follow When a Server Abend Occurs
	Using the Console Log
	Using Server Dumps to Diagnose Problems
	Creating a Server Dump
	Processing a Server Dump
	Diagnosing a Server Dump
	Formatting and Displaying Trace Records

	Printing a Server Dump

	Using System Trace Data to Diagnose Problems
	Setting Internal Tracing
	Setting External Tracing
	Other Diagnostic Facilities

	Chapter 10. Debugging GCS
	Internal Tracing Facilities
	Using the ITRACE Command and GTRACE Macro
	Formats of Internal Trace Entries
	Trace Header Format
	Trace Data Format
	Service Point (SP) Trace Entries

	External Tracing Facilities
	Using the TRSOURCE Command
	Locating the External Trace Buffer
	Format of the External Trace Buffer

	Using the TRSAVE Command
	A TRSOURCE/TRSAVE Command Example

	Using the CP TRACERED Utility
	A TRACERED Utility Example

	Using the QUERY TRFILES Command
	General Trace Information

	Formatting and Displaying External Trace Records
	Examples of Formatted External Trace Table Entries

	Dumping Facilities
	The Common Dump Receiver
	Rules of Authorization

	Interactive Debugging Support
	Using Authorized Control Program (CP) Commands
	Analyzing Dumps
	Dump Viewing Facility Features for GCS Dumps

	Dumping VSAM Information

	Creating GCS Dumps
	The GDUMP Command
	The SDUMP Macro
	The SDUMPX Macro
	The ABEND DUMP Macro
	The SYSTEM RESTART Command
	The VMDUMP Command
	Preserving Common Storage
	How to Find the GCS Virtual Machine That Created a Dump

	Using the GCS Trace Facilities
	ITRACE
	Locating the GCS Internal Trace Table
	In Private Storage
	In Common Storage
	Locating the Last Trace Entry in Storage or in a Dump

	Using the Trace Table
	ETRACE
	GTRACE

	Processing Abends
	The Abend Work Area
	Program Checks

	Processing GCS Dumps with the Dump Viewing Facility
	Information Used by the Dump Viewing Facility

	NUCON and SIE
	Virtual Machine Control Block
	How to Determine the User ID That Created a Trace Entry
	How to Locate the GCS Common Lock

	Task Management
	Task Block
	State Block
	WAIT COUNT Field in a State Block
	LINK Block
	SVC Block
	Asynchronous Exit Block (AEB)
	The Dispatch Queue
	How to Find the Task ID Table
	How to Find Which Task Is Running
	Tracing Task and Program Management

	Program Management
	Task Load List
	Virtual Machine Load List
	How to Find Where a Program Is Loaded
	GCS Load Error

	IUCV
	Debugging Applications
	Tracing IUCV
	The IUCV Anchor Block (IUCBK)
	The User ID Blocks (IUCID)
	The Path ID Table (IUCPT)
	How to Find Information about a Path

	Storage Management
	Storage Anchor Blocks
	Description of the Storage Anchor Control Blocks (SACBs)
	Important Fields in Major SACBs
	Important Fields in Minor SACBs
	Checking for Storage Fragmentation
	Scanning the Major and Minor SACBs
	Checking Free Storage on Any Given Page
	Finding the Key for a Given Page
	Control Blocks Describing the Storage Owned by a Task
	How to Find the Storage Belonging to a Given Task
	How to Check What Subpools Belong to a Given Task
	System-Wide Description of Storage
	System-Wide Description of TSHBs and GSBBs
	Common Storage Management Problems
	FREEMAIN or GETMAIN goes into an infinite loop

	Tracing Storage Management

	General I/O
	IOSAVE
	The Subchannel ID Table (SIDTABLE)
	The General I/O Table (GIOTB)
	I/O Interrupt Handling
	Interrupt Control Blocks
	How to Find What Pages Are Locked by PGLOCK
	Finding Pages Not Paged in After a Page Fault
	How to Find the Characteristics of a Device

	I/O Debugging
	Trace Table Entries
	Recreating the Problem

	Command and Console Support
	LOADCMD Command
	NUCON Information
	SIE Information
	CMDBUF
	WQE and ORE

	VSAM
	Data Compression Services
	Application Migration Considerations

	NUCON Changes
	VAD Information
	Boundary Box Usage
	VSAM Anchor Block

	VTAM/VSAM Work Areas
	Helpful Hints for VSAM debugging
	Debugging Data Compression Errors
	An Example of Control and Data Flow in GCS

	Chapter 11. Debugging TSAF
	Summary of Steps to Follow When a TSAF Abend Occurs
	Using the Console Log
	Using TSAF Dumps to Diagnose Problems
	Creating the TSAF Map
	Creating a TSAF Dump
	Processing a TSAF Dump
	Diagnosing a TSAF Dump
	Displaying the TSAF Dump Information
	Formatting and Displaying Trace Records in a Dump
	Printing a TSAF Dump

	Using System Trace Data to Diagnose Problems
	Setting External Tracing
	Viewing TSAF Trace Entries
	Trace Table Entry Format for TSAF

	Interactive Service Queries

	Chapter 12. Debugging AVS
	Using AVS Dumps to Diagnose Problems
	Obtaining the GCS Load Map
	Creating an AVS Dump
	Processing an AVS Dump
	Diagnosing an AVS Dump
	Displaying the AVS Dump Information with DUMPSCAN
	Formatting and Displaying Trace Records in a Dump

	Using System Trace Data to Diagnose Problems
	Setting Internal Tracing
	Setting External Tracing
	Viewing AVS Trace Entries
	Trace Table Entry Format for AVS
	Getting Information about Trace Entries

	Interactive Service Queries
	Summary of Steps to Follow When an AVS Abend Occurs

	Appendix A. Problem-Specific Checklists
	CP Abend Checklist
	CMS Abend Checklist
	GCS Abend Checklist
	RSCS Abend Checklist
	CP Wait State Checklist
	Virtual Machine Wait State Checklist
	RSCS Wait State Checklist
	Application Program checklist for Unexpected Output
	Checklists for Performance Problems
	An Infinite Loop in CP
	An Infinite Loop in a Virtual Machine
	An Infinite Loop in RSCS
	Hardware Failure
	Inadequate System Parameters

	Appendix B. GCS Control Blocks
	NUCON—GCS Nucleus Constant Area
	SIE—NUCON Extension
	TBK—Task Block
	STBLK—State Block
	SMAB—Storage Management
	ANCH—Storage Anchor Block
	EXTWA—External Interrupt Handler Work Area
	SVCWA—SVC Interrupt Handler Work Area
	PGMWA—Program Interrupt Work Area
	VMCB—Virtual Machine Control Block

	Appendix C. Trace Table Codes
	Notices
	Trademarks

	Glossary
	Bibliography
	Where to Get z/VM Books
	z/VM Base Library
	Overview
	Installation, Migration, and Service
	Planning and Administration
	Customization and Tuning
	Operation
	Application Programming
	End Use
	System Diagnosis

	Books for z/VM Optional Features
	Data Facility Storage Management Subsystem for VM
	Directory Maintenance Facility
	Performance Toolkit for VM™
	Resource Access Control Facility

	Index
	Readers’ Comments — We'd Like to Hear from You

